A114829 Each term is previous term plus floor of geometric mean of all previous terms.
1, 2, 3, 4, 6, 8, 11, 14, 18, 23, 29, 36, 44, 53, 63, 74, 87, 101, 117, 135, 155, 177, 201, 227, 256, 287, 321, 358, 398, 442, 489, 540, 595, 654, 717, 785, 858, 936, 1019, 1107, 1201, 1301, 1408, 1521, 1641, 1768, 1903, 2046, 2197, 2356, 2524, 2701, 2888, 3085, 3292, 3510, 3739, 3979, 4231
Offset: 1
Examples
a(2) = 1 + floor(1^(1/1)) = 1 + 1 = 2. a(3) = 2 + floor[(1*2)^(1/2)] = 2 + floor[sqrt(2)] = 2 + 1 = 3. a(4) = 3 + floor[(1*2*3)^(1/3)] = 3 + floor[CubeRoot(6)] = 3 + 1 = 4. a(5) = 4 + floor[(1*2*3*4)^(1/4)] = 4 + floor[4thRoot(24)] = 4 + 2 = 6. a(6) = 6 + floor[(1*2*3*4*6)^(1/5)] = 6 + floor[5thRoot(144)] = 6 + 2 = 8. a(7) = 8 + floor[(1*2*3*4*6*8)^(1/6)] = 6 + floor[6thRoot(1152)] = 8 + 3 = 11.
Links
- Eric Weisstein's World of Mathematics, Geometric Mean.
Programs
-
Maple
A114829 := proc(n) option remember; if n= 1 then 1; else mul(procname(i),i=1..n-1) ; procname(n-1)+floor(root[n-1](%)) ; end if; end proc: seq(A114829(n),n=1..60) ; # R. J. Mathar, Jun 23 2014
-
Mathematica
s={1};Do[AppendTo[s,Last[s]+Floor[GeometricMean[s]]],{n,58}];s (* James C. McMahon, Aug 19 2024 *)
Formula
a(1) = 1, a(n+1) = a(n) + floor(GeometricMean[a(1),a(2),...,a(n)]).
a(n+1) = a(n) + floor((Product_{k=1..n} a(k))^(1/n)).
Comments