A114830 Each term is previous term plus ceiling of geometric mean of all previous terms.
1, 2, 4, 6, 9, 13, 18, 24, 31, 39, 48, 59, 71, 85, 101, 119, 139, 162, 187, 215, 246, 280, 318, 359, 404, 453, 507, 565, 628, 697, 771, 851, 937, 1029, 1128, 1234, 1348, 1470, 1600, 1738, 1885, 2042, 2209, 2386, 2574, 2773, 2984, 3207, 3443, 3692, 3955, 4232, 4524, 4831, 5154, 5494, 5851, 6226, 6620
Offset: 1
Examples
a(2) = 1 + ceiling(1^(1/1)) = 1 + 1 = 2. a(3) = 2 + ceiling[(1*2)^(1/2)] = 2 + ceiling[sqrt(2)] = 2 + 2 = 4. a(4) = 4 + ceiling[(1*2*4)^(1/3)] = 4 + ceiling[CubeRoot(8)] = 4 + 2 = 6. a(5) = 6 + ceiling[(1*2*4*6)^(1/4)] = 6 + floor[4thRoot(48)] = 6 + 3 = 9. a(6) = 9 + ceiling[(1*2*4*6*9)^(1/5)] = 9 + ceiling[5thRoot(432)] = 9 + 4 = 13. a(7) = 13 + ceiling[(1*2*4*6*9*13)^(1/6)] = 6 + floor[6thRoot(5616)] = 13 + 5 = 18. a(25) = 359 + ceiling[(1 * 2 * 4 * 6 * 9 * 13 * 18 * 24 * 31 * 39 * 48 * 59 * 71 * 85 * 101 * 119 * 139 * 162 * 187 * 215 * 246 * 280 * 318 * 359)^(1/24)] = 359 + ceiling[44.8074289] = 359 + 45 = 404.
Links
- Eric Weisstein's World of Mathematics, Geometric Mean.
Programs
-
Maple
A114830 := proc(n) option remember; if n= 1 then 1; else mul(procname(i),i=1..n-1) ; procname(n-1)+ceil(root[n-1](%)) ; end if; end proc: seq(A114830(n),n=1..60) ; # R. J. Mathar, Jun 23 2014
-
Mathematica
Nest[Append[#,Last[#]+Ceiling@GeometricMean[#]]&,{1},58] (* James C. McMahon, Aug 20 2024 *)
Formula
a(1) = 1, a(n+1) = a(n) + ceiling(GeometricMean[a(1),a(2),...,a(n)]).
a(n+1) = a(n) + ceiling((Product_{k=1..n} a(k))^(1/n)).
Comments