cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114831 Each term is previous term plus floor of harmonic mean of two previous terms.

Original entry on oeis.org

1, 2, 3, 5, 8, 14, 24, 41, 71, 122, 211, 365, 632, 1094, 1895, 3282, 5684, 9845, 17052, 29534, 51154, 88601, 153461, 265802, 460382, 797405, 1381145, 2392213, 4143434, 7176638, 12430301, 21529913, 37290903, 64589738, 111872708, 193769214, 335618123, 581307641, 1006854369, 1743922922
Offset: 1

Views

Author

Jonathan Vos Post, Feb 19 2006

Keywords

Comments

For two numbers x and y, HarmonicMean[x,y] = [(GeometricMean[x,y])^2] / Arithmetic Mean[x,y].
What is this sequence, asymptotically?

Examples

			a(3) = 2 + floor(2*1*2/(1+2)) = 2 + floor(4/3) = 2 + 1 = 3.
a(4) = 3 + floor(2*2*3/(2+3)) = 3 + floor(12/5) = 3 + 2 = 5.
a(5) = 5 + floor(2*3*5/(3+5)) = 5 + floor(30/8) = 5 + 3 = 8.
a(6) = 8 + floor(2*5*8/(5+8)) = 8 + floor(80/13) = 8 + 6 = 14.
a(7) = 14 + floor(2*8*14/(8+14)) = 14 + floor(112/11) = 14 + 10 = 24.
		

Crossrefs

Programs

  • Maple
    hMean := proc(a,b)
        2*a*b/(a+b) ;
    end proc:
    A114831 := proc(n)
        option remember;
        if n<= 2 then
            n;
        else
            procname(n-1)+floor(hMean(procname(n-1),procname(n-2))) ;
        end if;
    end proc:
    seq(A114831(n),n=1..60) ; # R. J. Mathar, Jun 23 2014

Formula

a(1) = 1, a(2) = 2, for n>2: a(n+1) = a(n) + floor(HarmonicMean[a(n),a(n-1)]). a(n+1) = a(n) + floor[(2*a(n)*a(n-1))/(a(n)+a(n-1))].

Extensions

Corrected by R. J. Mathar, Jun 23 2014
Typo in a(40) corrected by Seth A. Troisi, May 13 2022