A114831 Each term is previous term plus floor of harmonic mean of two previous terms.
1, 2, 3, 5, 8, 14, 24, 41, 71, 122, 211, 365, 632, 1094, 1895, 3282, 5684, 9845, 17052, 29534, 51154, 88601, 153461, 265802, 460382, 797405, 1381145, 2392213, 4143434, 7176638, 12430301, 21529913, 37290903, 64589738, 111872708, 193769214, 335618123, 581307641, 1006854369, 1743922922
Offset: 1
Examples
a(3) = 2 + floor(2*1*2/(1+2)) = 2 + floor(4/3) = 2 + 1 = 3. a(4) = 3 + floor(2*2*3/(2+3)) = 3 + floor(12/5) = 3 + 2 = 5. a(5) = 5 + floor(2*3*5/(3+5)) = 5 + floor(30/8) = 5 + 3 = 8. a(6) = 8 + floor(2*5*8/(5+8)) = 8 + floor(80/13) = 8 + 6 = 14. a(7) = 14 + floor(2*8*14/(8+14)) = 14 + floor(112/11) = 14 + 10 = 24.
Links
- Eric Weisstein's World of Mathematics, Harmonic Mean.
- Eric Weisstein's World of Mathematics, Geometric Mean.
Programs
-
Maple
hMean := proc(a,b) 2*a*b/(a+b) ; end proc: A114831 := proc(n) option remember; if n<= 2 then n; else procname(n-1)+floor(hMean(procname(n-1),procname(n-2))) ; end if; end proc: seq(A114831(n),n=1..60) ; # R. J. Mathar, Jun 23 2014
Formula
a(1) = 1, a(2) = 2, for n>2: a(n+1) = a(n) + floor(HarmonicMean[a(n),a(n-1)]). a(n+1) = a(n) + floor[(2*a(n)*a(n-1))/(a(n)+a(n-1))].
Extensions
Corrected by R. J. Mathar, Jun 23 2014
Typo in a(40) corrected by Seth A. Troisi, May 13 2022
Comments