A114832 Each term is previous term plus ceiling of harmonic mean of two previous terms.
1, 2, 4, 7, 13, 23, 40, 70, 121, 210, 364, 631, 1093, 1894, 3281, 5683, 9844, 17050, 29532, 51151, 88597, 153455, 265792, 460366, 797377, 1381098, 2392132, 4143295, 7176398, 12429886, 21529195, 37289660, 64587586, 111868981, 193762759
Offset: 1
Examples
a(3) = 2 + ceiling(2*1*2/(1+2)) = 2 + ceiling(4/3) = 2 + 2 = 4. a(4) = 4 + ceiling(2*2*4/(2+4)) = 4 + ceiling(16/6) = 4 + 3 = 7. a(5) = 7 + ceiling(2*4*7/(4+7)) = 7 + ceiling(56/8) = 7 + 6 = 13. a(6) = 13 + ceiling(2*7*13/(7+13)) = 13 + ceiling(182/13) = 13 + 10 = 23. a(7) = 23 + ceiling(2*13*23/(13+23)) = 23 + ceiling(598/36) = 23 + 17 = 40. a(8) = 40 + ceiling(2*23*40/(23+40)) = 40 + ceiling(1840/63) = 40 + 30 = 70. a(9) = 70 + ceiling(2*40*70/(40+70)) = 70 + ceiling(5600/110) = 70 + 51 = 121. a(10) = 121 + ceiling(2*70*121/(70+121)) = 121 + ceiling(16940/191) = 121 + 89 = 210. a(11) = 210 + ceiling(2*121*210/(121+210)) = 121 + ceiling(50820/331) = 210 + 154 = 364. a(12) = 364 + ceiling(2*210*364/(210+364)) = 364 + ceiling(152880/574) = 364 + 267 = 631.
Links
- Eric Weisstein's World of Mathematics, Harmonic Mean.
- Eric Weisstein's World of Mathematics, Geometric Mean.
Programs
-
Maple
a[1]:=1: a[2]:=2: for n from 2 to 40 do a[n+1]:=a[n]+ceil((2*a[n]*a[n-1])/(a[n]+a[n-1])) od: seq(a[n],n=1..40); # Emeric Deutsch, Mar 03 2006
Formula
a(1) = 1, a(2) = 2, for n > 2: a(n+1) = a(n) + ceiling(HarmonicMean(a(n), a(n-1))). a(n+1) = a(n) + ceiling((2*a(n)*a(n-1))/(a(n) + a(n-1))).
Extensions
More terms from Emeric Deutsch, Mar 03 2006
Comments