A114834 Each term is previous term plus floor of root mean square of two previous terms.
1, 2, 3, 5, 9, 16, 28, 50, 90, 162, 293, 529, 956, 1728, 3124, 5648, 10211, 18462, 33380, 60352, 109119, 197293, 356716, 644961, 1166123, 2108412, 3812120, 6892514, 12462029, 22532007, 40739059, 73658371, 133178227, 240793271, 435366958, 787166465
Offset: 1
Examples
a(3) = 2 + floor[sqrt[(1^2 + 2^2)/2]] = 2 + floor[Sqrt[5/2]] = 2 + 1 = 3. a(4) = 3 + floor[sqrt[(2^2 + 3^2)/2]] = 4 + floor[Sqrt[13/2]] = 3 + 2 = 5. a(5) = 5 + floor[sqrt[(3^2 + 5^2)/2]] = 8 + floor[Sqrt[34/2]] = 5 + 4 = 9. a(6) = 9 + floor[sqrt[(5^2 + 9^2)/2]] = 15 + floor[Sqrt[106/2]] = 9 + 7 = 16. a(7) = 16 + floor[sqrt[(9^2 + 16^2)/2]] = 15 + floor[Sqrt[337/2]] = 16 + 12 = 28. a(8) = 28 + floor[sqrt[(16^2 + 28^2)/2]] = 15 + floor[Sqrt[1040/2]] = 28 + 22 = 50. a(9) = 50 + floor[sqrt[(28^2 + 50^2)/2]] = 50 + floor[Sqrt[3284/2]] = 50 + 40 = 90. a(10) = 90 + floor[sqrt[(50^2 + 90^2)/2]] = 50 + floor[Sqrt[10600/2]] = 90 + 72 = 162. a(11) = 162 + floor[sqrt[(90^2 + 162^2)/2]] = 50 + floor[Sqrt[34344/2]] = 162 + 131 = 293. a(12) = 293 + floor[sqrt[(162^2 + 293^2)/2]] = 293 + floor[Sqrt[112093/2]] = 293 + 236 = 529.
Links
- Eric Weisstein's World of Mathematics, Root-Mean-Square.
- Eric Weisstein's World of Mathematics, Mean.
Programs
-
Maple
rms := proc(a,b) sqrt((a^2+b^2)/2) ; end proc: A114834 := proc(n) option remember; if n<= 2 then n; else procname(n-1)+floor(rms(procname(n-1),procname(n-2))) ; end if; end proc: # R. J. Mathar, Jun 23 2014
Formula
a(1) = 1, a(2) = 2, for n>2: a(n+1) = a(n) + floor(RMS[a(n),a(n-1)]). a(n+1) = a(n) + floor[Sqrt[[a(n)^2]+[a(n-1)^2]/2]].
Comments