cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114854 a(n) = floor(n^(n/2)/n!!).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 8, 10, 20, 26, 51, 64, 128, 163, 326, 416, 834, 1067, 2148, 2755, 5559, 7147, 14449, 18613, 37696, 48638, 98650, 127463, 258857, 334864, 680822, 881657, 1794294, 2325750, 4737361
Offset: 1

Views

Author

Jonathan Vos Post, Feb 20 2006

Keywords

Comments

This sequence is a second approximation of a double factorial analog to Stirling's approximation to factorial. Note that a(n) is exact for n = 1, 2, 4.

Examples

			a(10) = floor((10^5)/3840) = floor(26.0416667) = 26.
a(11) = floor((11^5.5)/10395) = floor(51.3848715) = 51.
		

Crossrefs

Programs

  • Maple
    A114854 := proc(n)
        n^(n/2)/doublefactorial(n) ;
        floor(%) ;
    end proc:
    seq(A114854(n),n=1..35) ; # R. J. Mathar, Jun 23 2014
  • Mathematica
    Table[Floor[n^(n/2)/n!!],{n,40}] (* Harvey P. Dale, Apr 04 2019 *)

Formula

a(n) = floor(n^(n/2)/n!!). a(n) = floor(sqrt(A000312(n))/A006882(n)).