A114857 Decimal expansion of 0th Gram point.
1, 7, 8, 4, 5, 5, 9, 9, 5, 4, 0, 4, 1, 0, 8, 6, 0, 8, 1, 6, 8, 2, 6, 3, 3, 8, 4, 1, 2, 5, 1, 9, 0, 9, 7, 0, 3, 5, 6, 9, 3, 2, 8, 7, 4, 3, 3, 6, 9, 6, 4, 5, 2, 3, 9, 2, 1, 1, 8, 1, 1, 4, 8, 5, 9, 4, 8, 1, 6, 8, 7, 0, 0, 9, 2, 0, 1, 6, 0, 9, 5, 2, 1, 1, 7, 5, 1, 3, 4, 0, 4, 0, 8, 4, 8, 8, 2, 0, 8, 6, 7, 6
Offset: 2
Examples
17.8455995...
Links
- Eric Weisstein's World of Mathematics, Gram Point
Programs
-
Mathematica
First[ RealDigits[t /. FindRoot[ RiemannSiegelTheta[t] == 0, {t, 17}, WorkingPrecision -> 120], 10, 102]] (* Jean-François Alcover, Jun 07 2012 *)
-
PARI
g0(n)=2*Pi*exp(1+lambertw((8*n+1)/exp(1)/8)) \\ approximate location of gram(n) th(t)=arg(gamma(1/4+I*t/2))-log(Pi)*t/2 \\ theta, but off by some integer multiple of 2*Pi thapprox(t)=log(t/2/Pi)*t/2-t/2-Pi/8+1/48/t-1/5760/t^3 RStheta(t)=my(T=th(t)); (thapprox(t)-T)\/(2*Pi)*2*Pi+T gram(n)=my(G=g0(n),k=n*Pi); solve(x=G-.003,G+1e-8,RStheta(x)-k) gram(0) \\ Charles R Greathouse IV, Jan 22 2022
-
PARI
solve(t=17.8,18,4*Pi+arg(gamma(1/4+I*t/2))-log(Pi)*t/2) \\ Charles R Greathouse IV, Mar 27 2023