cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114857 Decimal expansion of 0th Gram point.

Original entry on oeis.org

1, 7, 8, 4, 5, 5, 9, 9, 5, 4, 0, 4, 1, 0, 8, 6, 0, 8, 1, 6, 8, 2, 6, 3, 3, 8, 4, 1, 2, 5, 1, 9, 0, 9, 7, 0, 3, 5, 6, 9, 3, 2, 8, 7, 4, 3, 3, 6, 9, 6, 4, 5, 2, 3, 9, 2, 1, 1, 8, 1, 1, 4, 8, 5, 9, 4, 8, 1, 6, 8, 7, 0, 0, 9, 2, 0, 1, 6, 0, 9, 5, 2, 1, 1, 7, 5, 1, 3, 4, 0, 4, 0, 8, 4, 8, 8, 2, 0, 8, 6, 7, 6
Offset: 2

Views

Author

Eric W. Weisstein, Jan 02 2006

Keywords

Examples

			17.8455995...
		

Crossrefs

Programs

  • Mathematica
    First[ RealDigits[t /. FindRoot[ RiemannSiegelTheta[t] == 0, {t, 17}, WorkingPrecision -> 120], 10, 102]] (* Jean-François Alcover, Jun 07 2012 *)
  • PARI
    g0(n)=2*Pi*exp(1+lambertw((8*n+1)/exp(1)/8)) \\ approximate location of gram(n)
    th(t)=arg(gamma(1/4+I*t/2))-log(Pi)*t/2 \\ theta, but off by some integer multiple of 2*Pi
    thapprox(t)=log(t/2/Pi)*t/2-t/2-Pi/8+1/48/t-1/5760/t^3
    RStheta(t)=my(T=th(t)); (thapprox(t)-T)\/(2*Pi)*2*Pi+T
    gram(n)=my(G=g0(n),k=n*Pi); solve(x=G-.003,G+1e-8,RStheta(x)-k)
    gram(0) \\ Charles R Greathouse IV, Jan 22 2022
    
  • PARI
    solve(t=17.8,18,4*Pi+arg(gamma(1/4+I*t/2))-log(Pi)*t/2) \\ Charles R Greathouse IV, Mar 27 2023