cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A114856 Indices n of ("bad") Gram points g(n) for which (-1)^n Z(g(n)) < 0, where Z(t) is the Riemann-Siegel Z-function.

Original entry on oeis.org

126, 134, 195, 211, 232, 254, 288, 367, 377, 379, 397, 400, 461, 507, 518, 529, 567, 578, 595, 618, 626, 637, 654, 668, 692, 694, 703, 715, 728, 766, 777, 793, 795, 807, 819, 848, 857, 869, 887, 964, 992, 995, 1016, 1028, 1034, 1043, 1046, 1071, 1086
Offset: 1

Views

Author

Eric W. Weisstein, Jan 02 2006

Keywords

Examples

			(-1)^126 Z(g(126)) = -0.0276294988571999.... - _David Baugh_, Apr 02 2008
		

Crossrefs

Programs

  • Mathematica
    g[n_] := (g0 /. FindRoot[ RiemannSiegelTheta[g0] == Pi*n, {g0, 2*Pi*Exp[1 + ProductLog[(8*n + 1)/(8*E)]]}, WorkingPrecision -> 16]); Reap[For[n = 1, n < 1100, n++, If[(-1)^n*RiemannSiegelZ[g[n]] < 0, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 17 2012, after Eric W. Weisstein *)
  • PARI
    g0(n)=2*Pi*exp(1+lambertw((8*n+1)/exp(1)/8)) \\ approximate location of gram(n)
    th(t)=arg(gamma(1/4+I*t/2))-log(Pi)*t/2 \\ theta, but off by some integer multiple of 2*Pi
    thapprox(t)=log(t/2/Pi)*t/2-t/2-Pi/8+1/48/t-1/5760/t^3
    RStheta(t)=my(T=th(t)); (thapprox(t)-T)\/(2*Pi)*2*Pi+T
    gram(n)=my(G=g0(n), k=n*Pi); solve(x=G-.003, G+1e-8, RStheta(x)-k)
    Z(t)=exp(th(t)*I)*zeta(1/2+I*t)
    is(n)=my(G=gram(n));real((-1)^n*Z(G))<0 \\ Charles R Greathouse IV, Jan 22 2022

Formula

Trudgian shows that a(n) = O(n), that is, there exists some k such that a(n) <= k*n. - Charles R Greathouse IV, Aug 29 2012
In fact Trudgian shows that a(n) ≍ n, and further, there exist constants 1 < b < c such that b*n < a(n) < c*n. (See the paper's discussion of the Weak Gram Law.) - Charles R Greathouse IV, Mar 28 2023

Extensions

Definition corrected by David Baugh, Apr 02 2008

A002505 Nearest integer to the n-th Gram point.

Original entry on oeis.org

18, 23, 28, 32, 35, 39, 42, 46, 49, 52, 55, 58, 60, 63, 66, 68, 71, 74, 76, 79, 81, 84, 86, 88, 91, 93, 95, 98, 100, 102, 104, 107, 109, 111, 113, 115, 118, 120, 122, 124, 126
Offset: 0

Views

Author

Keywords

Comments

Every integer greater than 3295 is in this sequence. - T. D. Noe, Aug 03 2007
Nearest integer to points t such that Re(zeta(1/2+i*t)) is not equal to zero and Im(zeta(1/2+i*t))=0. - Mats Granvik, May 14 2016

References

  • C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.
  • A. Ivić, The Theory of Hardy's Z-Function, Cambridge University Press, 2013, pages 109-112.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A273061. A114857 = 17.8455995..., A114858 = 23.1702827...

Programs

  • Mathematica
    a[n_] := Round[ g /. FindRoot[ RiemannSiegelTheta[g] == Pi*n, {g, 2*Pi*Exp[1 + ProductLog[(8*n + 1)/(8*E)]]}]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 17 2012, after Eric W. Weisstein *)
  • Sage
    a = lambda n: round(2*pi*(n - 7/8)/lambert_w((n - 7/8)/exp(1)))
    print([a(n) for n in (1..41)]) # Peter Luschny, May 19 2016

Formula

a(n) ~ 2*Pi*n/log n. - Charles R Greathouse IV, Oct 23 2015
From Mats Granvik, May 16 2016: (Start)
a(n) = round(2*Pi*exp(1 + LambertW((8*n + 1)/(8*exp(1))))), Eric Weisstein's World of Mathematics.
a(n+1) = round(2*Pi*(n - 7/8)/LambertW((n - 7/8)/exp(1))), after Guilherme França, André LeClair formula (163) page 47.
(End)
For c = 0 the n-th Gram point x is the fixed point solution to the iterative formula:
x = 2*Pi*e^(LambertW (-((c - n + RiemannSiegelTheta (x)/Pi + (x*(-log (x) + 1 + log (2) + log (Pi)))/(2*Pi) + 2)/e)) + 1). - Mats Granvik, Jun 17 2017

A114858 Decimal expansion of first Gram point.

Original entry on oeis.org

2, 3, 1, 7, 0, 2, 8, 2, 7, 0, 1, 2, 4, 6, 3, 0, 9, 2, 7, 8, 9, 9, 6, 6, 4, 3, 5, 3, 8, 3, 0, 1, 5, 3, 2, 0, 5, 1, 7, 4, 7, 0, 9, 8, 3, 2, 6, 8, 4, 1, 6, 4, 6, 9, 7, 0, 8, 3, 0, 0, 8, 8, 5, 1, 9, 0, 2, 2, 9, 6, 6, 0, 3, 1, 9, 9, 3, 6, 0, 9, 3, 9, 0, 3, 3, 1, 0, 5, 7, 7, 4, 8, 3, 4, 4, 6, 3, 9, 1, 6, 0, 4
Offset: 2

Views

Author

Eric W. Weisstein, Jan 02 2006

Keywords

Examples

			23.1702827...
		

Crossrefs

Programs

  • Mathematica
    First[ RealDigits[t /. FindRoot[ RiemannSiegelTheta[t] == Pi, {t, 23}, WorkingPrecision -> 120], 10, 102]] (* Jean-François Alcover, Jun 07 2012 *)
Showing 1-3 of 3 results.