A114875 Decimal expansion of -zeta'(1/2).
3, 9, 2, 2, 6, 4, 6, 1, 3, 9, 2, 0, 9, 1, 5, 1, 7, 2, 7, 4, 7, 1, 5, 3, 1, 4, 4, 6, 7, 1, 4, 5, 9, 9, 5, 1, 3, 7, 3, 0, 3, 2, 3, 9, 7, 1, 5, 0, 6, 5, 0, 5, 2, 0, 9, 5, 6, 8, 2, 9, 8, 4, 8, 5, 2, 5, 4, 7, 2, 0, 8, 0, 3, 1, 5, 0, 3, 3, 8, 2, 8, 4, 8, 8, 0, 6, 5, 0, 5, 2, 3, 1, 0, 4, 1, 4, 5, 6, 9, 1, 4, 0
Offset: 1
Examples
3.92264613920915172747153144671459951373032397150650...
Links
- B. K. Choudhury, The Riemann zeta-function and its derivatives, Proc. R. Soc. Lond. A 445 (1995) 477, Table 3.
- J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function.
Programs
-
Maple
Zeta(1,1/2) ;evalf(%) ; # R. J. Mathar, May 03 2021
-
Mathematica
RealDigits[-Zeta'[1/2], 10, 120][[1]] (* Amiram Eldar, Jun 15 2023 *)
-
PARI
-zeta'(1/2) \\ Charles R Greathouse IV, Mar 28 2012
-
PARI
-(2*Euler+Pi+2*log(8*Pi))*zeta(1/2)/4 \\ Charles R Greathouse IV, Mar 28 2012
Formula
Equals ((2*gamma + Pi + 2*log(8*Pi))*zeta(1/2))/4, where gamma is Euler's constant (A001620).