A114901 Number of compositions of n such that each part is adjacent to an equal part.
1, 0, 1, 1, 2, 1, 5, 3, 10, 10, 21, 22, 49, 51, 105, 126, 233, 292, 529, 678, 1181, 1585, 2654, 3654, 6016, 8416, 13606, 19395, 30840, 44517, 70087, 102070, 159304, 233941, 362429, 535520, 825358, 1225117, 1880220, 2801749, 4285086, 6404354, 9769782, 14634907
Offset: 0
Keywords
Examples
The 5 compositions of 6 are 3+3, 2+2+2, 2+2+1+1, 1+1+2+2, 1+1+1+1+1+1. From _Gus Wiseman_, Nov 25 2019: (Start) The a(2) = 1 through a(9) = 10 compositions: (11) (111) (22) (11111) (33) (11122) (44) (333) (1111) (222) (22111) (1133) (11133) (1122) (1111111) (2222) (33111) (2211) (3311) (111222) (111111) (11222) (222111) (22211) (1111122) (111122) (1112211) (112211) (1122111) (221111) (2211111) (11111111) (111111111) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4000
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Maple
g:= proc(n, i) option remember; add(b(n-i*j, i), j=2..n/i) end: b:= proc(n, l) option remember; `if`(n=0, 1, add(`if`(i=l, 0, g(n,i)), i=1..n/2)) end: a:= n-> b(n, 0): seq(a(n), n=0..50); # Alois P. Heinz, Nov 29 2019
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Min@@Length/@Split[#]>1&]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *) g[n_, i_] := g[n, i] = Sum[b[n - i*j, i], {j, 2, n/i}] ; b[n_, l_] := b[n, l] = If[n==0, 1, Sum[If[i==l, 0, g[n, i]], {i, 1, n/2}]]; a[n_] := b[n, 0]; a /@ Range[0, 50] (* Jean-François Alcover, May 23 2021, after Alois P. Heinz *)
-
PARI
A_x(N,k) = { my(x='x+O('x^N), g=1/(1-sum(i=1,N,sum(j=k+1,N, x^(i*j))/(1+ sum(j=k+1,N, x^(i*j)))))); Vec(g)} A_x(50,1) \\ John Tyler Rascoe, May 17 2024
Formula
INVERT(iMOEBIUS(iINVERT(A000012 shifted right 2 places)))
G.f.: A(x,1) is the k = 1 case of A(x,k) = 1/(1 - Sum_{i>0} ( (Sum_{j>k} x^(i*j))/(1 + Sum_{j>k} x^(i*j)) )) where A(x,k) is the g.f. for compositions of n with all run-lengths > k. - John Tyler Rascoe, May 16 2024