cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114923 Primes p such that there exist three primes q, r and s with p^3=q^3+r^3+s^3.

Original entry on oeis.org

709, 1033, 2767, 2791, 2917, 3727, 3769, 5647, 5657, 5737, 7039, 7321, 8089, 8291, 8387, 9433, 9473, 9851, 12073, 12343, 13417, 14083, 14561, 14723, 14831, 14969, 15313, 18127, 19841, 25033, 28081, 28477, 29153, 29179, 32771, 33161, 33199, 33377, 34337, 36713
Offset: 1

Views

Author

Keywords

Comments

The sets of three primes corresponding to the first seven terms of the sequence are respectively {193,461,631}, {599,691,823}, {103,2179,2213}, {769,1879,2447}, {31,1951,2591}, {1399,1667,3541} and {11,1783,3631}. - Robert G. Wilson v, Jan 09 2006
The sets of three primes corresponding to the next eight terms of the sequence are respectively {2251, 3121, 5171}, {1487, 2731, 5399}, {839, 3691, 5167}, {2099, 2377, 6883}, {3163, 5443, 5843}, {1621, 6323, 6481}, {2357, 4999, 7559} and {1621, 5297, 7589}. - Robert G. Wilson v, Jan 09 2006
The indices of the primes: 127,174,403,406,422,520,525,742,745,754,905,933,1017,1040,1050, ..., . - Robert G. Wilson v, Jan 09 2006
The sets of three primes corresponding to the terms 12073, 12343, 13417, 14083, 14561, 14723, 14831, 14969, 15313, 18127, 19841 and 25033 are respectively {4007, 4327, 11731}, {373, 9209, 10321}, {5099, 7561, 12277}, {4639, 7129, 13259}, {1997, 8599, 13469}, {3881, 6427, 14207}, {6257, 9439, 12959}, {2239, 5189, 14741}, {2269, 2969, 15259}, {2129, 5227, 17971}, {3931, 15263, 16127} and {4093, 19391, 20269}. The indices of the primes: 127, 174, 403, 406, 422, 520, 525, 742, 745, 754, 905, 933, 1017, 1040, 1050, 1168, 1174, 1215, 1446, 1474, 1591, 1661, 1707, 1723, 1738, 1753, 1789, 2077, 2244, 2765. - Farideh Firoozbakht, Jan 27 2006

Examples

			The prime number 3769 is in the sequence because we have 3769^3=11^3+1783^3+3631^3 and three numbers 11, 1783 and 3631 are primes.
		

Crossrefs

Subset of A023042.

Programs

  • Maple
    N:= 20000: # to get all terms <= N
    Primes:= select(isprime, [2,seq(i,i=3..N,2)]):
    P2:= {seq(seq(Primes[i]^3 + Primes[j]^3, j=1..i),i=1..nops(Primes))}:
    Q:= convert(map(t->-t^3,Primes),set):
    filter:= p -> P2 intersect map(`+`,Q,p^3) <> {}:
    select(filter, Primes); # Robert Israel, Jan 11 2016
  • Mathematica
    t = {}; Do[ If[p = (Prime[q]^3 + Prime[r]^3 + Prime[s]^3)^(1/3); PrimeQ[p], AppendTo[t, p]; Print[{p, Prime[s], Prime[r], Prime[q]}]], {q, 3, 1059}, {r, q-1}, {s, r-1}]; t (* Robert G. Wilson v, Jan 09 2006 *)
  • PARI
    is(p)=my(p3=p^3,a3,A,c);if(isprimepower(p3-16)==3, return(1)); forprime(a=sqrtnint(p3\3,3),sqrtnint(p3-54,3), a3=a^3; A=p3-a3; forprime(b=3,min(sqrtnint(A,3),a), if(ispower(A-b^3,3,&c) && isprime(c), return(isprime(p))))) \\ Charles R Greathouse IV, Nov 24 2017

Extensions

a(8)-a(18) from Robert G. Wilson v, Jan 09 2006
a(19)-a(30) from Farideh Firoozbakht, Jan 27 2006
a(31)-a(40) from Chai Wah Wu, Jan 10 2016