A114923 Primes p such that there exist three primes q, r and s with p^3=q^3+r^3+s^3.
709, 1033, 2767, 2791, 2917, 3727, 3769, 5647, 5657, 5737, 7039, 7321, 8089, 8291, 8387, 9433, 9473, 9851, 12073, 12343, 13417, 14083, 14561, 14723, 14831, 14969, 15313, 18127, 19841, 25033, 28081, 28477, 29153, 29179, 32771, 33161, 33199, 33377, 34337, 36713
Offset: 1
Keywords
Examples
The prime number 3769 is in the sequence because we have 3769^3=11^3+1783^3+3631^3 and three numbers 11, 1783 and 3631 are primes.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..776 (first 121 terms from Chai Wah Wu)
- G. L. Honaker, Jr. and Chris Caldwell, Prime Pages.
- Carlos Rivera, P^3=a^3+b^3+c^3, {P, a, b, c} = primes, Puzzle 48, The Prime Puzzles & Problems Connection.
Crossrefs
Subset of A023042.
Programs
-
Maple
N:= 20000: # to get all terms <= N Primes:= select(isprime, [2,seq(i,i=3..N,2)]): P2:= {seq(seq(Primes[i]^3 + Primes[j]^3, j=1..i),i=1..nops(Primes))}: Q:= convert(map(t->-t^3,Primes),set): filter:= p -> P2 intersect map(`+`,Q,p^3) <> {}: select(filter, Primes); # Robert Israel, Jan 11 2016
-
Mathematica
t = {}; Do[ If[p = (Prime[q]^3 + Prime[r]^3 + Prime[s]^3)^(1/3); PrimeQ[p], AppendTo[t, p]; Print[{p, Prime[s], Prime[r], Prime[q]}]], {q, 3, 1059}, {r, q-1}, {s, r-1}]; t (* Robert G. Wilson v, Jan 09 2006 *)
-
PARI
is(p)=my(p3=p^3,a3,A,c);if(isprimepower(p3-16)==3, return(1)); forprime(a=sqrtnint(p3\3,3),sqrtnint(p3-54,3), a3=a^3; A=p3-a3; forprime(b=3,min(sqrtnint(A,3),a), if(ispower(A-b^3,3,&c) && isprime(c), return(isprime(p))))) \\ Charles R Greathouse IV, Nov 24 2017
Extensions
a(8)-a(18) from Robert G. Wilson v, Jan 09 2006
a(19)-a(30) from Farideh Firoozbakht, Jan 27 2006
a(31)-a(40) from Chai Wah Wu, Jan 10 2016
Comments