cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A023042 Numbers whose cube is the sum of three distinct nonnegative cubes.

Original entry on oeis.org

6, 9, 12, 18, 19, 20, 24, 25, 27, 28, 29, 30, 36, 38, 40, 41, 42, 44, 45, 46, 48, 50, 53, 54, 56, 57, 58, 60, 63, 66, 67, 69, 70, 71, 72, 75, 76, 78, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 105, 106, 108, 110, 111, 112, 113
Offset: 1

Views

Author

Keywords

Comments

Numbers w such that w^3 = x^3+y^3+z^3, x>y>z>=0, is soluble.
A226903(n) + 1 is an infinite subsequence parametrized by Shiraishi in 1826. - Jonathan Sondow, Jun 22 2013
Because of Fermat's Last Theorem, sequence lists numbers w such that w^3 = x^3+y^3+z^3, x>y>z>0, is soluble. In other words, z cannot be 0 because x and y are positive integers by definition of this sequence. - Altug Alkan, May 08 2016
This sequence is the same as numbers w such that w^3 = x^3+y^3+z^3, x>=y>=z>0, is soluble as Legendre showed that a^3+b^3=2*c^3 only has the trivial solutions a = b or a = -b (see Dickson's History of the Theory of Numbers, vol. II, p. 573). - Chai Wah Wu, May 13 2017

Examples

			20 belongs to the sequence as 20^3 = 7^3 + 14^3 + 17^3.
		

References

  • Ya. I. Perelman, Algebra can be fun, pp. 142-143.

Crossrefs

Programs

  • Maple
    for w from 1 to 113 do for z from 0 to w-1 do bk:=0: for y from z+1 to w-1 do for x from y+((w+z) mod 2) to w-1 by 2 do if(x^3+y^3+z^3=w^3)then printf("%d, ",w); bk:=1: break: fi: od: if(bk=1)then break: fi: od: if(bk=1)then break: fi: od: od: # Nathaniel Johnston, Jun 22 2013
  • Mathematica
    Select[Range[200], n |-> Length[PowersRepresentations[n^3, 3, 3]] > 1] (* Paul C Abbott, May 07 2025 *)
  • PARI
    has(n)=my(L=sqrtnint(n-1,3)+1, U=sqrtnint(4*n,3)); fordiv(n,m, if(L<=m && m<=U, my(ell=(m^2-n/m)/3); if(denominator(ell)==1 && issquare(m^2-4*ell), return(1)))); 0
    list(lim)=my(v=List(),a3,t); lim\=1; for(a=2,sqrtint(lim\3), a3=a^3; for(b=if(a3>lim, sqrtnint(a3-lim-1,3)+1,1), a-1, t=a3-b^3; if(has(t), listput(v,a)))); Set(v) \\ Charles R Greathouse IV, Jan 25 2018

A258865 Numbers that are a sum of the cubes of three primes.

Original entry on oeis.org

24, 43, 62, 81, 141, 160, 179, 258, 277, 359, 375, 378, 397, 476, 495, 593, 694, 713, 811, 1029, 1347, 1366, 1385, 1464, 1483, 1581, 1682, 1701, 1799, 2017, 2213, 2232, 2251, 2330, 2349, 2447, 2548, 2567, 2665, 2670, 2689, 2787, 2883, 3005, 3536, 3555
Offset: 1

Views

Author

R. J. Mathar, Jun 12 2015

Keywords

Comments

The subsequence of cubes in the sequence starts 505^3, 535^3, 709^3, 865^3, 1033^3, 1037^3, 1067^3, 1133^3, 1513^3, ... See A258262.

Examples

			2^3+2^3+2^3=24. 2^3+2^3+3^3=43. 2^3+3^3+3^3=62. 3^3+3^3+3^3=81.
		

Crossrefs

Cf. A030078, A258262 (subsequence).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList)
    import qualified Data.Set as Set (union)
    import qualified Data.List.Ordered as List (union)
    a258865 n = a258865_list !! (n-1)
    a258865_list = tail $ f (singleton 1) 1 [] [] a030078_list where
       f s z vs qcs pcs'@(pc:pcs)
         | m < z = m : f s' z vs qcs pcs'
         | otherwise = f (Set.union s $ fromList $ map (+ pc) ws)
                         pc ws (pc:qcs) pcs
         where ws = List.union vs $ map (+ pc) (pc : qcs)
               (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 13 2015
    
  • Maple
    A258865 := proc(lim)
        local a,p,q,r ;
        a := {} ;
        p := 2 ;
        while p^3 < lim do
            q := p ;
            while p^3 +q^3< lim do
                r := q ;
                while p^3+q^3+r^3 <= lim do
                    a := a union {p^3+q^3+r^3} ;
                    r := nextprime(r) ;
                end do:
                q := nextprime(q) ;
            end do:
            p := nextprime(p) ;
        end do ;
        a ;
    end proc:
    A258865(30000) ;
  • Mathematica
    lim = 15; Take[Sort@ DeleteDuplicates[Total /@ (Tuples[Prime@ Range@ lim, 3]^3)], 3 lim] (* Michael De Vlieger, Jun 12 2015 *)
  • PARI
    list(lim)=my(v=List(), P=apply(p->p^3,primes(sqrtnint(lim\=1,3)))); foreach(P,p, foreach(P,q, my(s=p+q,t); for(i=1,#P, t=s+P[i]; if(t>lim,break); listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Aug 09 2021

Formula

a(n) = A030078(i)+A030078(j)+A030078(k) for some triple (i,j,k).
By a counting argument a(n) >> n log^3 n and hence the sequence is of density 0. - Charles R Greathouse IV, Aug 09 2021

A113490 Semiprimes a such that there exist three semiprimes b, c and d with a^3=b^3+c^3+d^3.

Original entry on oeis.org

206, 519, 703, 869, 1418, 1923, 1945, 2066, 2095, 2127, 2446, 2759, 2867, 2881, 2901, 2913, 2974, 3099, 3155, 3207, 3383, 3398, 3545, 3649, 3777, 3814, 3898, 4435, 4766, 4778, 4873, 4963, 5091, 5105, 5165, 5534, 5582, 5638, 5771, 5834, 5855, 6033, 6098
Offset: 1

Views

Author

Jonathan Vos Post, Jan 09 2006

Keywords

Comments

This is the semiprime analog of A114923.
There are only two such semiprimes < 10^4 with more than one solution: 2095 and 9897.

Examples

			206^3 = 35^3 + 77^3 + 202^3.
519^3 = 4^3 + 303^3 + 482^3
703^3 = 111^3 + 291^3 + 685^3.
869^3 = 466^3 + 629^3 + 674^3.
2095^3 = 339^3 + 753^3 + 2059^3 = 543^3 + 1119^3 + 1969^3 (two ways).
9897^3 = 537^3 + 1454^3 + 9886^3 = 2071^3 + 3183^3 + 9755^3 (two ways).
Each of these numbers (other than the exponent 3) is a semiprime (A001358).
		

Crossrefs

Extensions

Extended by Ray Chandler, Jan 20 2006

A384553 Primes p for which there exists more than one triple of primes q, r, s such that p^3 = q^3 + r^3 + s^3.

Original entry on oeis.org

28477, 33199, 49069, 234181, 300239, 403549, 463501, 958933, 982337, 1044227, 1352873, 1385861, 1713121, 1834321, 1994911, 2364673, 2531687, 2839927, 3048691, 3364553, 3546031, 3640543, 3897739, 3941711, 4000907, 4264219, 4273459, 4594399, 4599709, 4620037, 4924979
Offset: 1

Views

Author

Zhining Yang, Jun 03 2025

Keywords

Examples

			28477^3 = 3739^3 + 17203^3 + 26183^3 = 10781^3 + 11071^3 + 27361^3.
33199^3 = 2833^3 + 19081^3 + 30941^3 = 15187^3 + 24197^3 + 26647^3.
49069^3 =  661^3 + 37441^3 + 40343^3 = 22307^3 + 37243^3 + 38119^3.
		

Crossrefs

Showing 1-4 of 4 results.