cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A346917 Numbers that are a sum of the cubes of four primes, not necessarily distinct.

Original entry on oeis.org

32, 51, 70, 89, 108, 149, 168, 187, 206, 266, 285, 304, 367, 383, 386, 402, 405, 424, 484, 500, 503, 522, 601, 620, 702, 718, 721, 740, 819, 838, 936, 1037, 1056, 1154, 1355, 1372, 1374, 1393, 1412, 1472, 1491, 1510, 1589, 1608, 1690, 1706, 1709, 1728, 1807, 1826
Offset: 1

Views

Author

Amiram Eldar, Aug 07 2021

Keywords

Comments

Roth (1951) proved that the number of terms below x is >> x/log(x)^8.
Ren (2001) proved that this sequence has a positive lower density.
The lower density was proven to be larger than 0.003125 (Ren, 2003), 0.005776 (Liu, 2012), and 0.009664 (Elsholtz and Schlage-Puchta, 2019).

Examples

			a(1) = 32 = 2^3 + 2^3 + 2^3 + 2^3.
a(2) = 51 = 2^3 + 2^3 + 2^3 + 3^3.
a(3) = 70 = 2^3 + 2^3 + 3^3 + 3^3.
		

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{s = Select[Range[Floor @ Surd[max, 3]], PrimeQ]}, Select[Union[Plus @@@ (Tuples[s, 4]^3)], # <= max &]]; seq[2000]
  • PARI
    list(lim)=my(v=List(), P=apply(p->p^3,primes(sqrtnint(lim\=1,3)))); foreach(P,p, foreach(P,q, foreach(P,r, my(s=p+q+r,t); for(i=1,#P, t=s+P[i]; if(t>lim, break); listput(v,t))))); Set(v) \\ Charles R Greathouse IV, Aug 09 2021
    
  • Python
    from sympy import integer_nthroot, primerange
    from itertools import combinations_with_replacement as cwr
    def aupto(limit):
        cubes = [p**3 for p in primerange(2, integer_nthroot(limit, 3)[0])]
        return sorted(sum(c) for c in cwr(cubes, 4) if sum(c) <= limit)
    print(aupto(2000)) # Michael S. Branicky, Apr 09 2022

A258262 Cubes that are a sum of the cubes of three primes.

Original entry on oeis.org

128787625, 153130375, 356400829, 647214625, 1102302937, 1115157653, 1214767763, 1454419637, 3463512697, 14796346375, 18630700451, 21184951663, 21323063917, 21740999671, 24820429213, 29704593673, 32005984375, 38580208939, 51770001583, 53540005609, 68769820673, 74352915125, 89374579111, 94507253875, 113872553423
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 13 2015

Keywords

Comments

See comment in A258865.

Examples

			.   n |          a(n)
. ----+----------------------------------------------------
.   1 |     128787625 |   505^3 |  59^3 + 163^3 + 499^3
.   2 |     153130375 |   535^3 |  349^3 + 379^3 + 383^3
.   3 |     356400829 |   709^3 |  193^3 + 461^3 + 631^3
.   4 |     647214625 |   865^3 |  11^3 + 607^3 + 751^3
.   5 |    1102302937 |  1033^3 |  599^3 + 691^3 + 823^3
.   6 |    1115157653 |  1037^3 |  59^3 + 233^3 + 1033^3
.   7 |    1214767763 |  1067^3 |  97^3 + 269^3 + 1061^3
.   8 |    1454419637 |  1133^3 |  577^3 + 797^3 + 911^3
.   9 |    3463512697 |  1513^3 |  337^3 + 967^3 + 1361^3
.  10 |   14796346375 |  2455^3 |  1049^3 + 1789^3 + 1993^3
.  11 |   18630700451 |  2651^3 |  281^3 + 1889^3 + 2281^3
.  12 |   21184951663 |  2767^3 |  103^3 + 2179^3 + 2213^3
.  13 |   21323063917 |  2773^3 |  331^3 + 467^3 + 2767^3
.  14 |   21740999671 |  2791^3 |  769^3 + 1879^3 + 2447^3
.  15 |   24820429213 |  2917^3 |  31^3 + 1951^3 + 2591^3
.  16 |   29704593673 |  3097^3 |  1237^3 + 2081^3 + 2659^3
.  17 |   32005984375 |  3175^3 |  809^3 + 1789^3 + 2953^3
.  18 |   38580208939 |  3379^3 |  641^3 + 1993^3 + 3121^3
.  19 |   51770001583 |  3727^3 |  1399^3 + 1667^3 + 3541^3
.  20 |   53540005609 |  3769^3 |  11^3 + 1783^3 + 3631^3
.  21 |   68769820673 |  4097^3 |  1187^3 + 1861^3 + 3929^3
.  22 |   74352915125 |  4205^3 |  1657^3 + 1697^3 + 4019^3
.  23 |   89374579111 |  4471^3 |  1931^3 + 3163^3 + 3697^3
.  24 |   94507253875 |  4555^3 |  521^3 + 2833^3 + 4153^3
.  25 |  113872553423 |  4847^3 |  593^3 + 1237^3 + 4817^3  .
		

Crossrefs

Programs

  • Haskell
    a258262 n = a258262_list !! (n-1)
    a258262_list = filter ((== 1) . a010057) a258865_list

A302360 Numbers that are the sum of 3 cubes > 1.

Original entry on oeis.org

24, 43, 62, 80, 81, 99, 118, 136, 141, 155, 160, 179, 192, 197, 216, 232, 251, 253, 258, 270, 277, 288, 307, 314, 344, 349, 359, 368, 375, 378, 397, 405, 415, 434, 440, 459, 466, 471, 476, 495, 496, 528, 532, 547, 557, 566, 567, 584, 586, 593, 603, 623, 640, 645, 648, 664, 684, 694, 701, 713, 736, 745, 750
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 06 2018

Keywords

Examples

			118 is in the sequence because 118 = 3^3 + 3^3 + 4^3.
		

Crossrefs

Programs

  • Mathematica
    max = 750; f[x_] := Sum[x^(k^3), {k, 2, 10}]^3; Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, max}]]
    Total/@Tuples[Range[2,10]^3,3]//Union (* Harvey P. Dale, May 26 2019 *)
Showing 1-3 of 3 results.