cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A362066 Primes associated with the indices in A362060.

Original entry on oeis.org

17, 12491, 14723, 42437, 57089, 58193, 61051, 63131, 63347, 64553, 64567, 64577, 64591, 64601, 64661, 64679, 64951, 65071, 65173, 65293, 65881, 66863, 69931, 79817, 99551, 129083, 165103, 263071, 284833, 1407647, 1515259, 4303027, 6440999, 14968819, 95517973, 527737957, 1893230839, 1950929941, 1964567161
Offset: 1

Views

Author

Jean-Marc Rebert, Apr 07 2023

Keywords

Comments

Is this the same as A114924, or are there base-10 expressions of pi(p) which become p after striking 2 or more digits? - R. J. Mathar, Apr 18 2023

Crossrefs

Cf. A362060.

Programs

  • Python
    from sympy import sieve
    def okA362060(n):
        p = sieve[n]
        while n and p:
            if n%10 == p%10:
                n //= 10
            p //= 10
        return n == 0
    print([sieve[k] for k in range(1, 10**6) if okA362060(k)]) # Michael S. Branicky, Apr 07 2023
    
  • Python
    from sympy import prime, nextprime
    from itertools import count, islice
    def A362066_gen(startvalue=1): # generator of terms >= startvalue
        p = prime(max(startvalue,1))
        for k in count(max(startvalue,1)):
            c = iter(str(p))
            if all(map(lambda b:any(map(lambda a:a==b,c)),str(k))):
                yield p
            p = nextprime(p)
    A362066_list = list(islice(A362066_gen(),20)) # Chai Wah Wu, Apr 07 2023

A113898 Numbers k such that the value pi(k), the number of primes <= k, can be obtained deleting some of the repeating adjacent digits of k.

Original entry on oeis.org

1196, 11373, 22517, 33597, 44639, 55646, 60062, 61159, 62256, 63346, 63347, 64448, 64544, 64555, 64577, 64588, 64599, 64611, 64655, 64668, 64700, 64711, 64722, 64774, 64884, 64992, 65545, 65770, 65880, 65881, 65990, 66644, 67746, 68841
Offset: 1

Views

Author

Giovanni Resta, Jan 29 2006

Keywords

Comments

Largest value below 10^7 is given by pi(110486) = 10486.

Examples

			pi(64668) = 6468, pi(99551) = 9551.
		

Crossrefs

Programs

  • Mathematica
    lst = {}; p=0; While[p < 10^7, n=PrimePi[ ++p]; {sp, sn}=Split/@IntegerDigits@{p, n}; If[First/@sp==First/@sn && And@@GreaterEqual@@@Transpose[Length/@#&/@{sp, sn}], AppendTo[lst, p]]]; lst

A236469 Primes p such that pi(p) = floor(p/10), where pi is the prime counting function.

Original entry on oeis.org

64553, 64567, 64577, 64591, 64601, 64661
Offset: 1

Views

Author

K. D. Bajpai, Jan 26 2014

Keywords

Comments

No further term below 32452843.
The first three terms in the sequence are consecutive primes.
Is this sequence finite?
No further term below 179424673.
The prime number theorem implies that this sequence is finite. Rosser proves that pi(x) < x/(log x - 4) for x >= 55, which can be used to show that there are no more terms. - Eric M. Schmidt, Aug 04 2014

Crossrefs

Programs

  • Maple
    KD := proc() local a,b; a:=ithprime(n); b:=floor(a/10); if n=b then RETURN (a);fi; end: seq(KD(), n=1..1000000);
  • Mathematica
    Do[p = Prime[n]; k = Floor[p/10]; If[k == n, Print[p]], {n, 10^6}] (* Bajpai *)
    Select[Prime[Range[6500]], PrimePi[#] == Floor[#/10] &] (* Alonso del Arte, Jan 26 2014 *)
Showing 1-3 of 3 results.