cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A072393 Numbers n such that n - reverse(n) = phi(n).

Original entry on oeis.org

91, 874, 3411, 9093, 40112, 44252, 54081, 67284, 80224, 90933, 91503, 4961782, 5400081, 5726691, 8750834, 9076921, 9155055, 54000081, 62023914, 90766921, 93079231, 430770922, 540000081, 636355044, 808618664, 907666921, 928709013, 4050394312, 4262971312
Offset: 1

Views

Author

Joseph L. Pe, Jul 21 2002

Keywords

Comments

If m>1 and p=2*10^m+3 is prime then n=27*p is in the sequence because n-reversal(n)=27*(2*10^m+3)-reversal(27*(2*10^m+3))= (54*10^m+81)-(18*10^m+45)=36*10^m+36=18*(2*10^m+2)=phi(27)* phi(2*10^m+3)=phi(27*(2*10^m+3))=phi(n). Also if m>2 and p=(389*10^m+109)/3 is prime then 7*p is in the sequence (the proof is easy). Next term is greater than 2*10^8. - Farideh Firoozbakht, Jan 27 2006
a(51) > 10^12. - Giovanni Resta, Oct 28 2012

Examples

			91 - 19 = 72 = phi(91), so 91 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], # - FromDigits[Reverse[IntegerDigits[n]]] == EulerPhi[ # ] &]

Extensions

More terms from Farideh Firoozbakht, Jan 27 2006
a(22)-a(29) from Donovan Johnson, Dec 04 2011

A114928 Numbers n such that sigma(n)=4*reversal(n).

Original entry on oeis.org

42, 402, 492, 4000002, 57906504, 400000002, 4000000002, 6279090751, 62698513951, 400000000002
Offset: 1

Views

Author

Farideh Firoozbakht, Jan 28 2006

Keywords

Comments

If p=(2*10^n+1)/3 is prime then m=6*p is in the sequence because sigma(m)=sigma(6*p)=12*(2*10^n+4)/3=4*(2*10^n+4)=4* reversal(4*10^n+2)=4*reversal(6*(2*10^n+1)/3)=4*reversal(6*p) =4*reversal(m). Next term is greater than 5*10^8.
a(11) > 10^12. - Giovanni Resta, Oct 28 2012

Examples

			492 is in the sequence because sigma(492)=sigma(4*3*41)=7*4*42
=4*294=4*reversal(492).
		

Crossrefs

Programs

  • Mathematica
    Do[If[DivisorSigma[1, n]==4*FromDigits[Reverse[IntegerDigits[n]]], Print[n]], {n, 500000000}]

Extensions

a(7)-a(9) from Donovan Johnson, Dec 21 2008
a(10) from Giovanni Resta, Oct 28 2012
Showing 1-2 of 2 results.