A114954 A 3/2-power Fibonacci sequence.
1, 1, 2, 4, 11, 45, 339, 6544, 535619, 392527477, 7777266564708, 21689055127418446258, 101009204076980364695686091211
Offset: 0
Examples
a(2) = ceiling(a(0)^(3/2) + a(1)^(3/2)) = ceiling(1^1.5 + 1^1.5) = 2. a(3) = ceiling(a(1)^(3/2) + a(2)^(3/2)) = ceiling(1^1.5 + 2^1.5) = ceiling(3.82842712) = 4. a(4) = ceiling(2^(3/2) + 4^(3/2)) = ceiling(10.8284271) = 11. a(5) = ceiling((4^(3/2)) + (11^(3/2))) = ceiling(44.4828727) = 45. a(6) = ceiling((11^(3/2)) + (45^(3/2))) = ceiling(338.35205) = 339. a(7) = ceiling((45^(3/2)) + (339^(3/2))) = ceiling(6543.52112) = 6544.
Programs
-
Mathematica
RecurrenceTable[{a[0]==a[1]==1,a[n]==Ceiling[Surd[ a[n-1]^3,2]+ Surd[ a[n-2]^3, 2]]},a,{n,15}] (* Harvey P. Dale, Apr 07 2016 *)
Formula
a(0) = a(1) = 1, for n>1 a(n) = ceiling(a(n-1)^(3/2) + a(n-2)^(3/2)).
Comments