cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114985 Numbers whose sum of distinct prime factors is semiprime.

Original entry on oeis.org

14, 21, 26, 28, 30, 33, 38, 46, 52, 56, 57, 60, 62, 63, 69, 70, 74, 76, 85, 90, 92, 93, 94, 98, 99, 102, 104, 105, 106, 112, 120, 124, 129, 133, 134, 140, 145, 147, 148, 150, 152, 166, 171, 174, 177, 178, 180, 182, 184, 188, 189, 190, 195, 196, 204, 205, 207, 208
Offset: 1

Views

Author

Jonathan Vos Post, Feb 22 2006

Keywords

Comments

This is the semiprime analog of A114522 "numbers n such that sum of distinct prime divisors of n is prime." See also A110893 "numbers with a semiprime number of prime divisors (counted with multiplicity)."

Examples

			a(1) = 14 because 14 = 2 * 7 and 2 + 7 = 9 = 3^2 is semiprime.
a(2) = 21 because 21 = 3 * 7 and 3 + 7 = 10 = 2 * 5 is semiprime.
a(3) = 26 because 26 = 2 * 13 and 2 + 13 = 15 = 3 * 5 is semiprime.
a(4) = 28 because 28 = 2^2 * 7 and 2 + 7 = 9 = 3^2 is semiprime.
a(5) = 30 because 30 = 2 * 3 * 5 and 2 + 3 + 5 = 10 = 2 * 5 is semiprime.
a(6) = 33 because 33 = 3 * 11 and 3 + 11 = 14 = 2 * 7 is semiprime.
a(7) = 38 because 38 = 2 * 19 and 2 + 19 = 21 = 3 * 7 is semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local A,s,B: A:=factorset(n): s:=sum(A[j],j=1..nops(A)): B:=factorset(s): if nops(B)=2 and B[1]*B[2]=s or nops(B)=1 and B[1]^2=s then n else fi end: seq(a(n),n=2..250); # Emeric Deutsch, Mar 07 2006
  • Mathematica
    Select[Range[250],PrimeOmega[Total[Transpose[FactorInteger[#]][[1]]]]==2&] (* Harvey P. Dale, May 06 2013 *)
  • PARI
    is(n)=bigomega(vecsum(factor(n)[,1]))==2 \\ Charles R Greathouse IV, Sep 14 2015

Formula

{k such that A008472(k) is an element of A001358}. {k such that sopf(k) is an element of A001358}. {k = Product(Prime(j)^e_j) such that Sum(Prime(j)) is in A001358}.

Extensions

Corrected and extended by Emeric Deutsch, Mar 07 2006