A115029 Number of partitions of n such that all parts, with the possible exception of the smallest, appear only once.
1, 1, 2, 3, 5, 6, 10, 12, 17, 22, 29, 36, 48, 59, 73, 93, 114, 139, 171, 207, 250, 304, 361, 432, 517, 613, 722, 856, 1005, 1178, 1382, 1612, 1875, 2184, 2528, 2927, 3386, 3900, 4486, 5159, 5916, 6772, 7749, 8843, 10078, 11482, 13048, 14811, 16805, 19026
Offset: 0
Examples
a(5) = 6 because we have [5], [4,1], [3,2], [3,1,1], [2,1,1,1] and [1,1,1,1,1] ([2,2,1] does not qualify).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A034296.
Programs
-
Maple
g:=1+sum(x^k/(1-x^k)*product(1+x^i,i=k+1..90),k=1..90): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..44); # Emeric Deutsch, Apr 19 2006 # second Maple program: b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1)+ `if`(irem(n, i)=0, 1, 0)+`if`(n>i, b(n-i, i-1), 0)) end: a:= n-> b(n$2): seq(a(n), n=0..50); # Alois P. Heinz, Feb 03 2019
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[Mod[n, i] == 0, 1, 0] + If[n > i, b[n - i, i - 1], 0]]; a[n_] := b[n, n]; a /@ Range[0, 50] (* Jean-François Alcover, Nov 21 2020, after Alois P. Heinz *)
Formula
G.f.: 1+Sum_{k>=1} x^k/(1-x^k)*Product_{i>=k+1} (1+x^i).
G.f.: 1+Sum_{k>=1} (x^k/(1-x^k)) * Sum_{m=0..k-1} x^(m*(m+1)/2) / Product_{i=1..m} (1-x^i). - Emeric Deutsch, Apr 19 2006
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (2 * Pi * n^(1/4)). - Vaclav Kotesovec, Jun 15 2025
Extensions
a(0)=1 prepended by Alois P. Heinz, Feb 03 2019
Comments