cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115029 Number of partitions of n such that all parts, with the possible exception of the smallest, appear only once.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 17, 22, 29, 36, 48, 59, 73, 93, 114, 139, 171, 207, 250, 304, 361, 432, 517, 613, 722, 856, 1005, 1178, 1382, 1612, 1875, 2184, 2528, 2927, 3386, 3900, 4486, 5159, 5916, 6772, 7749, 8843, 10078, 11482, 13048, 14811, 16805, 19026
Offset: 0

Views

Author

Vladeta Jovovic, Feb 25 2006; corrected Mar 05 2006

Keywords

Comments

Also number of partitions of n such that if k is the largest part, then k and all integers from 1 to some integer m, 0<=mEmeric Deutsch, Apr 19 2006

Examples

			a(5) = 6 because we have [5], [4,1], [3,2], [3,1,1], [2,1,1,1] and [1,1,1,1,1] ([2,2,1] does not qualify).
		

Crossrefs

Cf. A034296.

Programs

  • Maple
    g:=1+sum(x^k/(1-x^k)*product(1+x^i,i=k+1..90),k=1..90): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..44); # Emeric Deutsch, Apr 19 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1)+
          `if`(irem(n, i)=0, 1, 0)+`if`(n>i, b(n-i, i-1), 0))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 03 2019
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[Mod[n, i] == 0, 1, 0] + If[n > i, b[n - i, i - 1], 0]];
    a[n_] := b[n, n];
    a /@ Range[0, 50] (* Jean-François Alcover, Nov 21 2020, after Alois P. Heinz *)

Formula

G.f.: 1+Sum_{k>=1} x^k/(1-x^k)*Product_{i>=k+1} (1+x^i).
G.f.: 1+Sum_{k>=1} (x^k/(1-x^k)) * Sum_{m=0..k-1} x^(m*(m+1)/2) / Product_{i=1..m} (1-x^i). - Emeric Deutsch, Apr 19 2006
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (2 * Pi * n^(1/4)). - Vaclav Kotesovec, Jun 15 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 03 2019