cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A115033 Alternately multiply and divide, with a(1)=2 and a(2)=3.

Original entry on oeis.org

2, 3, 6, 2, 12, 6, 72, 12, 864, 72, 62208, 864, 53747712, 62208, 3343537668096, 53747712, 179707499645975396352, 3343537668096, 600858794305667322270155425185792, 179707499645975396352, 107978831564966913814384922944738457859243070439030784, 600858794305667322270155425185792
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 26 2006

Keywords

Crossrefs

Programs

  • Maple
    addmul:=proc(k,m,maxn) local f:
      f:= proc(n) if n::even
        then k^combinat:-fibonacci(n/2-1)  *m^combinat:-fibonacci(n/2-2)
        else k^combinat:-fibonacci((n+1)/2)*m^combinat:-fibonacci((n-1)/2)
        fi
      end proc:
      map(f, [$1..maxn]);
    end proc: # after Robert Israel in A174348
    addmul(2,3,22)[]; # Georg Fischer, Jun 18 2021
  • Mathematica
    nxt[{a_, b_}]:={a*b, (a*b)/b}; NestList[nxt, {2,3}, 10]//Flatten (* Georg Fischer, Jun 18 2021 *)

Formula

a(2*k) = a(2*k-3); a(2*k+1) = a(2*k)*a(2*k-1). - Georg Fischer, Jun 18 2021

Extensions

Definition adapted to offset by Georg Fischer, Jun 18 2021
Corrected and extended by Michel Marcus, May 31 2025

A174348 Alternately multiply and divide, with a(1)=3 and a(1)=7.

Original entry on oeis.org

3, 7, 21, 3, 63, 21, 1323, 63, 83349, 1323, 110270727, 83349, 9190954824723, 110270727, 1013493270346362783621, 9190954824723, 9314970862914194811435918430261983, 1013493270346362783621
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 16 2010

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) if n::even then 3^combinat:-fibonacci(n/2-1)*7^combinat:-fibonacci(n/2-2)
                else 3^combinat:-fibonacci((n+1)/2)*7^combinat:-fibonacci((n-1)/2)
                fi
    end proc:
    map(f, [$1..20]); # Robert Israel, Dec 05 2016
  • Mathematica
    nxt[{a_,b_}]:={a*b,(a*b)/b}; NestList[nxt,{3,7},10]//Flatten (* Harvey P. Dale, Sep 06 2020 *)

Formula

From Robert Israel, Dec 05 2016: (Start)
a(2k) = a(2k-3) = 3^A000045(k-1)*7^A000045(k-2) for k >=2.
a(2k+1) = a(2k)*a(2k-1) = 3^A000045(k+1)*7^A000045(k) for k>=1. (End)

Extensions

a(18) corrected by Robert Israel, Dec 05 2016

A115043 a(0)=3, a(1)=5. a(n) = a(n-1)*a(n-2) if n odd, else a(n) = a(n-1)/a(n-2).

Original entry on oeis.org

3, 5, 15, 3, 45, 15, 675, 45, 30375, 675, 20503125, 30375, 622782421875, 20503125, 12768985843505859375, 622782421875, 7952299928506168842315673828125, 12768985843505859375
Offset: 0

Views

Author

Giovanni Teofilatto, Feb 28 2006

Keywords

Comments

All divisors >1 of the terms are also in the sequence.

Crossrefs

Formula

a(n) = a(n-2)*a(n-4) if n odd. a(n)=a(n-3) if n even.
a(2n+1) = 3^Fibonacci(n+1) * 5^Fibonacci(n).
a(2n) = 3^Fibonacci(n-1) * 5^Fibonacci(n-2).

Extensions

Formulas corrected by R. J. Mathar, Mar 16 2010
Showing 1-3 of 3 results.