A115051 Number of distinct prime factors of F(n + L(n)) where F(n) is the Fibonacci number and L(n) is the Lucas number.
0, 0, 1, 1, 1, 3, 4, 5, 4, 4, 6, 15, 4, 9, 3, 8, 22, 42, 61
Offset: 0
Examples
The first three terms are 1 since: F(2 + L(2)) = 5 (a prime) F(3 + L(3)) = 13 (a prime) F(4 + L(4)) = 89 (a prime)
Links
- Blair Kelley, Factorizations
- FactorDB, Status of F(9368).
Programs
-
Maple
lucas := proc(n::integer) if n = 0 then RETURN(2) ; elif n = 1 then RETURN(1) ; else RETURN(combinat[fibonacci](n-1)+combinat[fibonacci](n+1)) ; fi ; end : for n from 2 to 100 do print(n+lucas(n),"...") ; tst := combinat[fibonacci](n+lucas(n)) ; an := nops(op(2,ifactors(tst))) ; print(an) ; od : # R. J. Mathar, Apr 23 2006
-
Mathematica
Table[PrimeNu[Fibonacci[n+LucasL[n]]],{n,0,15}] (* Harvey P. Dale, Nov 12 2016 *)
Extensions
More terms from R. J. Mathar, Apr 23 2006
Offset corrected and a(15)-a(18) added from factordb.com by Amiram Eldar, Feb 12 2020
a(0)=a(1)=0 inserted by Max Alekseyev, Jun 15 2025
Comments