cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A137436 Triangular sequence based on the coefficients of the Blaschke product like tan(3u) polynomial function: p(x,t)=Exp[x*t]*(-t)*(3 - t^2)/(-1 + 3*t^2).

Original entry on oeis.org

0, 3, 0, 6, 48, 0, 9, 0, 192, 0, 12, 2880, 0, 480, 0, 15, 0, 17280, 0, 960, 0, 18, 362880, 0, 60480, 0, 1680, 0, 21, 0, 2903040, 0, 161280, 0, 2688, 0, 24, 78382080, 0, 13063680, 0, 362880, 0, 4032, 0, 27, 0, 783820800, 0, 43545600, 0, 725760, 0, 5760, 0, 30
Offset: 1

Views

Author

Roger L. Bagula, Apr 27 2008

Keywords

Comments

Row sums are:
{0, 3, 6, 57, 204, 3375, 18258, 425061, 3067032, 91812699, 828097950}:
The Tan(m*arcTan(t)) functions that recur as nested ( here m=3):
f^n(t)=Tan(m^n*arcTan(t));
are interesting as Chebyshev like and being related to magnetic models.

Examples

			{0},
{3},
{0, 6},
{48, 0, 9},
{0, 192, 0, 12},
{2880, 0, 480, 0, 15},
{0, 17280, 0, 960, 0, 18},
{362880, 0, 60480, 0, 1680, 0, 21},
{0, 2903040, 0, 161280, 0, 2688, 0, 24},
{78382080, 0, 13063680, 0, 362880, 0, 4032, 0, 27},
{0, 783820800, 0, 43545600, 0, 725760, 0, 5760, 0, 30}
		

References

  • Over and Over Again, Chang and Sederberg,MAA,1997, page 111.
  • Peitgen and Richter, eds., The Beauty of Fractals, Springer-Verlag, New York, 1986, page 47, map 7, page 146.

Crossrefs

Cf. A115052.

Programs

  • Mathematica
    p[t_] = Exp[x*t]*(-t)*(3 - t^2)/(-1 + 3*t^2); Table[ ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]

Formula

p(x,t)=Exp[x*t]*(-t)*(3 - t^2)/(-1 + 3*t^2)=Sum[P(x,n)*t^n/n!,{n,0,Infinity}]; out_n,m=n!*Coefficient(P(x,n))
Showing 1-1 of 1 results.