cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115057 Number of (2n+1)-almost primes less than or equal to (n-th n-almost prime) * ((n+1)-th (n+1)-almostprime).

Original entry on oeis.org

2, 5, 11, 17, 25, 30, 45, 67, 74, 82, 95, 111, 141, 177, 193, 208, 211, 223, 257, 277, 288, 353, 431, 453, 481, 509, 528, 540, 563, 619, 672, 700, 725, 745, 804, 857, 905, 1003, 1077, 1127, 1199, 1268, 1281, 1321, 1354, 1379, 1423, 1517, 1607, 1660, 1714, 1748
Offset: 1

Views

Author

Jonathan Vos Post, Oct 08 2007

Keywords

Comments

Numbers k such that Pi(2n-1, (n-th n-almost prime) * ((n+1)-th (n+1)-almostprime)) = Pi(2n-1, A101695(n)*A101695(n+1)) = (2n-1)-AlmostPrime(k).

Crossrefs

Cf. A101695.

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[ PrimePi[n / Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]] (* Eric W. Weisstein, Feb 07 2006 *);
    lst={ (* the list of entries in A101695 *) }; lsu = {}; Do[a = AlmostPrimePi[2 n + 1, lst[[n]]*lst[[n + 1]]]; AppendTo[lsu, a]; Print[{n, a}], {n, 228}] (* Robert G. Wilson v, Oct 08 2007 *)