cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115060 Maximum peak of aliquot sequence starting at n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 13, 14, 15, 16, 17, 21, 19, 22, 21, 22, 23, 55, 25, 26, 27, 28, 29, 259, 31, 32, 33, 34, 35, 55, 37, 38, 39, 50, 41, 259, 43, 50, 45, 46, 47, 76, 49, 50, 51, 52, 53, 259, 55, 64, 57, 58, 59, 172, 61, 62, 63, 64, 65, 259
Offset: 1

Views

Author

Sergio Pimentel, Mar 06 2006

Keywords

Comments

According to Catalan's conjecture all aliquot sequences end in a prime followed by 1, a perfect number, a friendly pair or an aliquot cycle. Some sequences seem to be open ended and keep growing forever i.e. 276. Most sequences only go down (i.e. 10 - 8 - 7 - 1), so for most cases in this sequence, a(n) = n. The first number to achieve a significantly high peak is 138

Examples

			a(24)=55 because the aliquot sequence starting at 24 is: 24 - 36 - 55 - 17 - 1 so the maximum peak of this sequence is 55.
		

Crossrefs

Programs

  • Python
    from sympy import divisor_sigma as sigma
    def aliquot(n):
        alst = []; seen = set(); i = n
        while i and i not in seen: alst.append(i); seen.add(i); i = sigma(i) - i
        return alst
    def aupton(terms): return [max(aliquot(n)) for n in range(1, terms+1)]
    print(aupton(66)) # Michael S. Branicky, Jul 11 2021

Extensions

More terms from Jinyuan Wang, Jul 11 2021