cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115063 Natural numbers of the form p^F(n_p)*q^F(n_q)*r^F(n_r)*...*z^F(n_z), where p,q,r,... are distinct primes and F(n) is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 01 2006

Keywords

Comments

The complementary sequence is 16, 48, 64, 80, 81, 112, 128, 144, 162, 176, 192, 208, 240, 272, 304, 320, 324, 336, 368, 384, 400, ... - R. J. Mathar, Apr 22 2010
Or exponentially Fibonacci numbers. - Vladimir Shevelev, Nov 15 2015
Sequences A004709, A005117, A046100 are subsequences. - Vladimir Shevelev, Nov 16 2015
Let h_k be the density of the subsequence of A115063 of numbers whose prime power factorization has the form Product_i p_i^e_i where the e_i all squares <= k^2. Then for every k>1 there exists eps_k>0 such that for any x from the interval (h_k-eps_k, h_k) there is no sequence S of positive integers such that x is the density of numbers whose prime power factorization has the form Product_i p_i^e_i where the e_i are all in S. For a proof, see [Shevelev], the second link. - Vladimir Shevelev, Nov 17 2015
Numbers whose sets of unitary divisors (A077610) and Zeckendorf-infinitary divisors (see A318465) coincide. Also, numbers whose sets of unitary divisors and dual-Zeckendorf-infinitary divisors (see A331109) coincide. - Amiram Eldar, Aug 09 2024

Examples

			12 is a term, since 12=2^2*3^1 and the exponents 2 and 1 are terms of Fibonacci sequence (A000045). - _Vladimir Shevelev_, Nov 15 2015
		

Crossrefs

Programs

  • Mathematica
    fibQ[n_] := IntegerQ @ Sqrt[5 n^2 - 4] || IntegerQ @ Sqrt[5 n^2 + 4]; aQ[n_] := AllTrue[FactorInteger[n][[;;, 2]], fibQ]; Select[Range[100], aQ] (* Amiram Eldar, Oct 06 2019 *)

Formula

Sum_{i<=x, i is in A115063} 1 = h*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and h = Product_{prime p}(1 + Sum_{i>=2} (u(i)-u(i-1))/p^i) = 0.944335905... where u(n) is the characteristic function of sequence A000045. The calculations of h over the formula were done independently by Juan Arias-de-Reyna and Peter J. C. Moses.
For a proof of the formula, see [Shevelev], the first link. - Vladimir Shevelev, Nov 17 2015

Extensions

a(35) inserted by Amiram Eldar, Oct 06 2019