A115068 Triangle read by rows: T(n,k) = number of elements in the Coxeter group D_n with descent set contained in {s_k}, for 0<=k<=n-1.
1, 2, 2, 4, 6, 3, 8, 16, 12, 4, 16, 40, 40, 20, 5, 32, 96, 120, 80, 30, 6, 64, 224, 336, 280, 140, 42, 7, 128, 512, 896, 896, 560, 224, 56, 8, 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1024, 5632, 14080, 21120
Offset: 1
Examples
First six rows: 1 2...2 4...6....3 8...16...12...4 16..40...40...20...5 32..96...120..80...30...6
References
- A. Bjorner and F. Brenti, Combinatorics of Coxeter Groups, Springer, New York, 2005.
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
Programs
-
Haskell
a115068 n k = a115068_tabl !! (n-1) !! (k-1) a115068_row n = a115068_tabl !! (n-1) a115068_tabl = iterate (\row -> zipWith (+) (row ++ [1]) $ zipWith (+) (row ++ [0]) ([0] ++ row)) [1] -- Reinhard Zumkeller, Jul 22 2013
-
Mathematica
z = 11; p[0, x_] := 1; p[n_, x_] := x*p[n - 1, x] + 1; q[n_, x_] := (2 x + 1)^n; p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A115068 *) TableForm[Table[h[n], {n, 0, z}]] Flatten[Table[h[n], {n, -1, z}]] (* A193862 *)
Formula
T(n,k)=binomial(n,k)*2^(n-k-1).
T(n,1) = 2^(n-1), T(n,n) = n, for n > 1: T(n,k) = T(n-1,k-1) + 2*T(n-1,k), 1 < k < n. - Reinhard Zumkeller, Jul 22 2013
Comments