cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115068 Triangle read by rows: T(n,k) = number of elements in the Coxeter group D_n with descent set contained in {s_k}, for 0<=k<=n-1.

Original entry on oeis.org

1, 2, 2, 4, 6, 3, 8, 16, 12, 4, 16, 40, 40, 20, 5, 32, 96, 120, 80, 30, 6, 64, 224, 336, 280, 140, 42, 7, 128, 512, 896, 896, 560, 224, 56, 8, 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1024, 5632, 14080, 21120
Offset: 1

Views

Author

Elizabeth Morris (epmorris(AT)math.washington.edu), Mar 01 2006

Keywords

Comments

A115068 is the fission of the polynomial sequence (p(x,n)) by the polynomial sequence ((2x+1)^n), where p(n,x)=x^n+x^(n-1)+...+x+1, n>=0. See A193842 for the definition of fission. - Clark Kimberling, Aug 07 2011

Examples

			First six rows:
1
2...2
4...6....3
8...16...12...4
16..40...40...20...5
32..96...120..80...30...6
		

References

  • A. Bjorner and F. Brenti, Combinatorics of Coxeter Groups, Springer, New York, 2005.
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.

Crossrefs

Programs

  • Haskell
    a115068 n k = a115068_tabl !! (n-1) !! (k-1)
    a115068_row n = a115068_tabl !! (n-1)
    a115068_tabl = iterate (\row -> zipWith (+) (row ++ [1]) $
                                    zipWith (+) (row ++ [0]) ([0] ++ row)) [1]
    -- Reinhard Zumkeller, Jul 22 2013
  • Mathematica
    z = 11;
    p[0, x_] := 1; p[n_, x_] := x*p[n - 1, x] + 1;
    q[n_, x_] := (2 x + 1)^n;
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A115068 *)
    TableForm[Table[h[n], {n, 0, z}]]
    Flatten[Table[h[n], {n, -1, z}]]   (* A193862 *)

Formula

T(n,k)=binomial(n,k)*2^(n-k-1).
T(n,1) = 2^(n-1), T(n,n) = n, for n > 1: T(n,k) = T(n-1,k-1) + 2*T(n-1,k), 1 < k < n. - Reinhard Zumkeller, Jul 22 2013