cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A193862 Mirror of the triangle A115068.

Original entry on oeis.org

1, 2, 2, 3, 6, 4, 4, 12, 16, 8, 5, 20, 40, 40, 16, 6, 30, 80, 120, 96, 32, 7, 42, 140, 280, 336, 224, 64, 8, 56, 224, 560, 896, 896, 512, 128, 9, 72, 336, 1008, 2016, 2688, 2304, 1152, 256, 10, 90, 480, 1680, 4032, 6720, 7680, 5760, 2560, 512, 11, 110, 660
Offset: 0

Views

Author

Clark Kimberling, Aug 07 2011

Keywords

Comments

A193862 is obtained by reversing the rows of the triangle A115068.
Riordan array (1/(1-x)^2, 2*x/(1-x)). - Philippe Deléham, Jan 29 2014
Let P(n, x) := Sum_{k=1..n} T(n, k)*x^k. Then P(n, P(m, x)) = P(n*m, x) for all n and m in Z. - Michael Somos, Apr 10 2020

Examples

			First six rows:
1
2...2
3...6....4
4...12...16...8
5...20...40...40....16
6...30...80...120...96...32
Production matrix begins
2......2
-1/2...1...2
1/4....0...1...2
-1/8...0...0...1...2
1/16...0...0...0...1...2
-1/32..0...0...0...0...1...2
1/64...0...0...0...0...0...1...2
-1/128.0...0...0...0...0...0...1...2
1/256..0...0...0...0...0...0...0...1...2
- _Philippe Deléham_, Jan 29 2014
		

Crossrefs

Cf. A115068.

Programs

  • Mathematica
    z = 11;
    p[0, x_] := 1; p[n_, x_] := x*p[n - 1, x] + 1;
    q[n_, x_] := (2 x + 1)^n;
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A115068 *)
    TableForm[Table[h[n], {n, 0, z}]]
    Flatten[Table[h[n], {n, -1, z}]]   (* A193862 *)
    T[ n_, k_] := Binomial[n, k]/2 2^k; (* Michael Somos, Apr 10 2020 *)
  • PARI
    {T(n, k) = binomial(n, k)/2 * 2^k}; /* Michael Somos, Apr 10 2020 */

Formula

Write w(n,k) for the triangle at A115068. The triangle at A193862 is then given by w(n,n-k).
T(n, k) = binomial(n, k)/2 * 2^k. - Michael Somos, Apr 10 2020

A013609 Triangle of coefficients in expansion of (1+2*x)^n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 6, 12, 8, 1, 8, 24, 32, 16, 1, 10, 40, 80, 80, 32, 1, 12, 60, 160, 240, 192, 64, 1, 14, 84, 280, 560, 672, 448, 128, 1, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 1, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (n,k) with steps (1,0) and two kinds of steps (1,1). The number of paths with steps (1,0) and s kinds of steps (1,1) corresponds to the expansion of (1+s*x)^n. - Joerg Arndt, Jul 01 2011
Also sum of rows in A046816. - Lior Manor, Apr 24 2004
Also square array of unsigned coefficients of Chebyshev polynomials of second kind. - Philippe Deléham, Aug 12 2005
The rows give the number of k-simplices in the n-cube. For example, 1, 6, 12, 8 shows that the 3-cube has 1 volume, 6 faces, 12 edges and 8 vertices. - Joshua Zucker, Jun 05 2006
Triangle whose (i, j)-th entry is binomial(i, j)*2^j.
With offset [1,1] the triangle with doubled numbers, 2*a(n,m), enumerates sequences of length m with nonzero integer entries n_i satisfying sum(|n_i|) <= n. Example n=4, m=2: [1,3], [3,1], [2,2] each in 2^2=4 signed versions: 2*a(4,2) = 2*6 = 12. The Sum over m (row sums of 2*a(n,m)) gives 2*3^(n-1), n >= 1. See the W. Lang comment and a K. A. Meissner reference under A024023. - Wolfdieter Lang, Jan 21 2008
n-th row of the triangle = leftmost column of nonzero terms of X^n, where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (2,2,2,...) in the subdiagonal. - Gary W. Adamson, Jul 19 2008
Numerators of a matrix square-root of Pascal's triangle A007318, where the denominators for the n-th row are set to 2^n. - Gerald McGarvey, Aug 20 2009
From Johannes W. Meijer, Sep 22 2010: (Start)
The triangle sums (see A180662 for their definitions) link the Pell-Jacobsthal triangle, whose mirror image is A038207, with twenty-four different sequences; see the crossrefs.
This triangle may very well be called the Pell-Jacobsthal triangle in view of the fact that A000129 (Kn21) are the Pell numbers and A001045 (Kn11) the Jacobsthal numbers.
(End)
T(n,k) equals the number of n-length words on {0,1,2} having n-k zeros. - Milan Janjic, Jul 24 2015
T(n-1,k-1) is the number of 2-compositions of n with zeros having k positive parts; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020
T(n,k) is the number of chains 0=x_0Geoffrey Critzer, Oct 01 2022
Excluding the initial 1, T(n,k) is the number of k-faces of a regular n-cross polytope. See A038207 for n-cube and A135278 for n-simplex. - Mohammed Yaseen, Jan 14 2023

Examples

			Triangle begins:
  1;
  1,  2;
  1,  4,   4;
  1,  6,  12,    8;
  1,  8,  24,   32,   16;
  1, 10,  40,   80,   80,    32;
  1, 12,  60,  160,  240,   192,    64;
  1, 14,  84,  280,  560,   672,   448,    128;
  1, 16, 112,  448, 1120,  1792,  1792,   1024,    256;
  1, 18, 144,  672, 2016,  4032,  5376,   4608,   2304,    512;
  1, 20, 180,  960, 3360,  8064, 13440,  15360,  11520,   5120,  1024;
  1, 22, 220, 1320, 5280, 14784, 29568,  42240,  42240,  28160, 11264,  2048;
  1, 24, 264, 1760, 7920, 25344, 59136, 101376, 126720, 112640, 67584, 24576, 4096;
From _Peter Bala_, Apr 20 2012: (Start)
The triangle can be written as the matrix product A038207*(signed version of A013609).
  |.1................||.1..................|
  |.2...1............||-1...2..............|
  |.4...4...1........||.1..-4...4..........|
  |.8..12...6...1....||-1...6...-12...8....|
  |16..32..24...8...1||.1..-8....24.-32..16|
  |..................||....................|
(End)
		

References

  • B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
  • G. Hotz, Zur Reduktion von Schaltkreispolynomen im Hinblick auf eine Verwendung in Rechenautomaten, El. Datenverarbeitung, Folge 5 (1960), pp. 21-27.

Crossrefs

Cf. A007318, A013610, etc.
Appears in A167580 and A167591. - Johannes W. Meijer, Nov 23 2009
From Johannes W. Meijer, Sep 22 2010: (Start)
Triangle sums (see the comments): A000244 (Row1); A000012 (Row2); A001045 (Kn11); A026644 (Kn12); 4*A011377 (Kn13); A000129 (Kn21); A094706 (Kn22); A099625 (Kn23); A001653 (Kn3); A007583 (Kn4); A046717 (Fi1); A007051 (Fi2); A077949 (Ca1); A008998 (Ca2); A180675 (Ca3); A092467 (Ca4); A052942 (Gi1); A008999 (Gi2); A180676 (Gi3); A180677 (Gi4); A140413 (Ze1); A180678 (Ze2); A097117 (Ze3); A055588 (Ze4).
(End)
T(2n,n) gives A059304.

Programs

  • Haskell
    a013609 n = a013609_list !! n
    a013609_list = concat $ iterate ([1,2] *) [1]
    instance Num a => Num [a] where
       fromInteger k = [fromInteger k]
       (p:ps) + (q:qs) = p + q : ps + qs
       ps + qs         = ps ++ qs
       (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
        *                = []
    -- Reinhard Zumkeller, Apr 02 2011
    
  • Haskell
    a013609 n k = a013609_tabl !! n !! k
    a013609_row n = a013609_tabl !! n
    a013609_tabl = iterate (\row -> zipWith (+) ([0] ++ row) $
                                    zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Jul 22 2013, Feb 27 2013
    
  • Magma
    [2^k*Binomial(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 17 2021
    
  • Maple
    bin2:=proc(n,k) option remember; if k<0 or k>n then 0 elif k=0 then 1 else 2*bin2(n-1,k-1)+bin2(n-1,k); fi; end; # N. J. A. Sloane, Jun 01 2009
  • Mathematica
    Flatten[Table[CoefficientList[(1 + 2*x)^n, x], {n, 0, 10}]][[1 ;; 59]] (* Jean-François Alcover, May 17 2011 *)
    BinomialROW[n_, k_, t_] := Sum[Binomial[n, k]*Binomial[k, j]*(-1)^(k - j)*t^j, {j, 0, k}]; Column[Table[BinomialROW[n, k, 3], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jan 28 2019 *)
  • Maxima
    a(n,k):=coeff(expand((1+2*x)^n),x^k);
    create_list(a(n,k),n,0,6,k,0,n); /* Emanuele Munarini, Nov 21 2012 */
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [1,1], [1,1]]; /* note double [1,1] */
    /* Joerg Arndt, Jul 01 2011 */
    
  • Sage
    flatten([[2^k*binomial(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 17 2021

Formula

G.f.: 1 / (1 - x*(1+2*y)).
T(n,k) = 2^k*binomial(n,k).
T(n,k) = 2*T(n-1,k-1) + T(n-1,k). - Jon Perry, Nov 22 2005
Row sums are 3^n = A000244(n). - Joerg Arndt, Jul 01 2011
T(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i). - Mircea Merca, Apr 28 2012
E.g.f.: exp(2*y*x + x). - Geoffrey Critzer, Nov 12 2012
Riordan array (x/(1 - x), 2*x/(1 - x)). Exp(2*x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(2*x)*(1 + 6*x + 12*x^2/2! + 8*x^3/3!) = 1 + 8*x + 40*x^2/2! + 160*x^3/3! + 560*x^4/4! + .... The same property holds more generally for Riordan arrays of the form (f(x), 2*x/(1 - x)). - Peter Bala, Dec 21 2014
T(n,k) = Sum_{j=0..k} (-1)^(k-j) * binomial(n,k) * binomial(k,j) * 3^j. - Kolosov Petro, Jan 28 2019
T(n,k) = 2*(n+1-k)*T(n,k-1)/k, T(n,0) = 1. - Alexander R. Povolotsky, Oct 08 2023
For n >= 1, GCD(T(n,1), ..., T(n,n)) = GCD(T(n,1),T(n,n)) = GCD(2*n,2^n) = A171977(n). - Pontus von Brömssen, Nov 01 2024

A193842 Triangular array: the fission of the polynomial sequence ((x+1)^n: n >= 0) by the polynomial sequence ((x+2)^n: n >= 0). (Fission is defined at Comments.)

Original entry on oeis.org

1, 1, 4, 1, 7, 13, 1, 10, 34, 40, 1, 13, 64, 142, 121, 1, 16, 103, 334, 547, 364, 1, 19, 151, 643, 1549, 2005, 1093, 1, 22, 208, 1096, 3478, 6652, 7108, 3280, 1, 25, 274, 1720, 6766, 17086, 27064, 24604, 9841, 1, 28, 349, 2542, 11926, 37384, 78322, 105796
Offset: 0

Views

Author

Clark Kimberling, Aug 07 2011

Keywords

Comments

Suppose that p = p(n)*x^n + p(n-1)*x^(n-1) + ... + p(1)*x + p(0) is a polynomial and that Q is a sequence of polynomials:
...
q(k,x) = t(k,0)*x^k + t(k,1)*x^(k-1) + ... + t(k,k-1)*x + t(k,k),
...
for k = 0, 1, 2, ... The Q-downstep of p is the polynomial given by
...
D(p) = p(n)*q(n-1,x) + p(n-1)*q(n-2,x) + ... + p(1)*q(0,x). (Note that p(0) does not appear. "Q-downstep" as just defined differs slightly from "Q-downstep" as defined for a different purpose at A193649.)
...
Now suppose that P = (p(n,x): n >= 0) and Q = (q(n,x): n >= 0) are sequences of polynomials, where n indicates degree. The fission of P by Q, denoted by P^^Q, is introduced here as the sequence W = (w(n,x): n >= 0) of polynomials defined by w(0,x) = 1 and w(n,x) = D(p(n+1,x)).
...
Strictly speaking, ^^ is an operation on sequences of polynomials. However, if P and Q are regarded as numerical triangles (of coefficients of polynomials), then ^^ can be regarded as an operation on numerical triangles. In this case, row n of P^^Q, for n > 0, is given by the matrix product P(n+1)*QQ(n), where P(n+1) =(p(n+1,n+1), p(n+1,n), ..., p(n+1,2), p(n+1,1)) and QQ(n) is the (n+1)-by-(n+1) matrix given by
...
q(n,0) .. q(n,1)............. q(n,n-1) .... q(n,n)
0 ....... q(n-1,0)........... q(n-1,n-2)... q(n-1,n-1)
0 ....... 0.................. q(n-2,n-3) .. q(n-2,n-2)
...
0 ....... 0.................. q(1,0) ...... q(1,1)
0 ....... 0 ................. 0 ........... q(0,0).
Here, the polynomial q(k,x) is taken to be
q(k,0)*x^k + q(k,1)x^(k-1) + ... + q(k,k)*x + q(k,k);
i.e., "q" is used instead of "t".
...
Example: Let p(n,x) = (x+1)^n and q(n,x) = (x+2)^n. Then
...
w(0,x) = 1 by the definition of W,
w(1,x) = D(p(2,x)) = 1*(x+2) + 2*1 = x + 4,
w(2,x) = D(p(3,x)) = 1*(x^2+4*x+4) + 3*(x+2) + 3*1 = x^2 + 7*x + 13,
w(3,x) = D(p(4,x)) = 1*(x^3+6*x^2+12*x+8) + 4*(x^2+4x+4) + 6*(x+2) + 4*1 = x^3 + 10*x^2 + 34*x + 40.
...
From these first 4 polynomials in the sequence P^^Q, we can write the first 4 rows of P^^Q when P, Q, and P^^Q are regarded as triangles:
1
1...4
1...7....13
1...10...34...40
...
In the following examples, r(P^^Q) is the mirror of P^^Q, obtained by reversing the rows of P^^Q. Let u denote the polynomial x^n + x^(n-1) + ... + x + 1.
...
..P........Q...........P^^Q........r(P^^Q)
(x+1)^n....(x+2)^n.....A193842.....A193843
(x+1)^n....(x+1)^n.....A193844.....A193845
(x+2)^n....(x+1)^n.....A193846.....A193847
(2x+1)^n...(x+1)^n.....A193856.....A193857
(x+1)^n....(2x+1)^n....A193858.....A193859
(x+1)^n.......u........A054143.....A104709
..u........(x+1)^n.....A074909.....A074909
..u...........u........A002260.....A004736
(x+2)^n.......u........A193850.....A193851
..u.........(x+2)^n....A193844.....A193845
(2x+1)^n......u........A193860.....A193861
..u.........(2x+1)^n...A115068.....A193862
...
Regarding A193842,
col 1 ...... A000012
col 2 ...... A016777
col 3 ...... A081271
w(n,n) ..... A003462
w(n,n-1) ... A014915

Examples

			First six rows, for 0 <= k <= n and 0 <= n <= 5:
  1
  1...4
  1...7....13
  1...10...34....40
  1...13...64....142...121
  1...16...103...334...547...364
		

Crossrefs

Cf. A193722 (fusion of P by Q), A193649 (Q-residue), A193843 (mirror of A193842).

Programs

  • Magma
    [ (&+[3^(k-j)*Binomial(n-j,k-j): j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
  • Maple
    fission := proc(p, q, n) local d, k;
    p(n+1,0)*q(n,x)+add(coeff(p(n+1,x),x^k)*q(n-k,x), k=1..n);
    seq(coeff(%,x,n-k), k=0..n) end:
    A193842_row := n -> fission((n,x) -> (x+1)^n, (n,x) -> (x+2)^n, n);
    for n from 0 to 5 do A193842_row(n) od; # Peter Luschny, Jul 23 2014
    # Alternatively:
    p := (n,x) -> add(x^k*(1+3*x)^(n-k),k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n,x), x) od; # Peter Luschny, Jun 18 2017
  • Mathematica
    (* First program *)
    z = 10;
    p[n_, x_] := (x + 1)^n;
    q[n_, x_] := (x + 2)^n
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A193842 *)
    TableForm[Table[h[n], {n, 0, z}]]  (* A193843 *)
    Flatten[Table[h[n], {n, -1, z}]]
    (* Second program *)
    Table[SeriesCoefficient[((x+3)^(n+1) -1)/(x+2), {x,0,n-k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
  • PARI
    T(n,k) = sum(j=0,k, 3^(k-j)*binomial(n-j,k-j)); \\ G. C. Greubel, Feb 18 2020
    
  • Sage
    from mpmath import mp, hyp2f1
    mp.dps = 100; mp.pretty = True
    def T(n,k):
        return 3^k*binomial(n,k)*hyp2f1(1,-k,-n,1/3)-0^(n-k)//2
    for n in range(7):
        print([int(T(n,k)) for k in (0..n)]) # Peter Luschny, Jul 23 2014
    
  • Sage
    # Second program using the 'fission' operation.
    def fission(p, q, n):
        F = p(n+1,0)*q(n,x)+add(expand(p(n+1,x)).coefficient(x,k)*q(n-k,x) for k in (1..n))
        return [expand(F).coefficient(x,n-k) for k in (0..n)]
    A193842_row = lambda k: fission(lambda n,x: (x+1)^n, lambda n,x: (x+2)^n, k)
    for n in range(7): A193842_row(n) # Peter Luschny, Jul 23 2014
    

Formula

From Peter Bala, Jul 16 2013: (Start)
T(n,k) = Sum_{i = 0..k} 3^(k-i)*binomial(n-i,k-i).
O.g.f.: 1/((1 - x*t)*(1 - (1 + 3*x)*t)) = 1 + (1 + 4*x)*t + (1 + 7*x + 13*x^2)*t^2 + ....
The n-th row polynomial is R(n,x) = (1/(2*x + 1))*((3*x + 1)^(n+1) - x^(n+1)). (End)
T(n,k) = T(n-1,k) + 4*T(n-1,k-1) - T(n-2,k-1) - 3*T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 4, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 17 2014
T(n,k) = 3^k * C(n,k) * hyp2F1(1, -k, -n, 1/3) with or without the additional term -0^(n-k)/2 depending on the exact definition of the hypergeometric function used. Compare formulas 15.2.5 and 15.2.6 in the DLMF reference. - Peter Luschny, Jul 23 2014

Extensions

Name and Comments edited by Petros Hadjicostas, Jun 05 2020

A119468 Triangle read by rows: T(n,k) = Sum_{j=0..n-k} binomial(n,2j)*binomial(n-2j,k).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 8, 16, 12, 4, 1, 16, 40, 40, 20, 5, 1, 32, 96, 120, 80, 30, 6, 1, 64, 224, 336, 280, 140, 42, 7, 1, 128, 512, 896, 896, 560, 224, 56, 8, 1, 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 1, 512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1
Offset: 0

Views

Author

Paul Barry, May 21 2006

Keywords

Comments

Product of Pascal's triangle A007318 and A119467. Row sums are A007051. Diagonal sums are A113225.
Variant of A080928, A115068 and A082137. - R. J. Mathar, Feb 09 2010
Matrix inverse of the Euler tangent triangle A081733. - Peter Luschny, Jul 18 2012
Central column: T(2*n,n) = A069723(n). - Peter Luschny, Jul 22 2012
Subtriangle of the triangle in A198792. - Philippe Deléham, Nov 10 2013

Examples

			Triangle begins
    1;
    1,    1;
    2,    2,    1;
    4,    6,    3,    1;
    8,   16,   12,    4,    1;
   16,   40,   40,   20,    5,    1;
   32,   96,  120,   80,   30,    6,    1;
   64,  224,  336,  280,  140,   42,    7,   1;
  128,  512,  896,  896,  560,  224,   56,   8,  1;
  256, 1152, 2304, 2688, 2016, 1008,  336,  72,  9,  1;
  512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1;
		

Crossrefs

A082137 read as triangle with rows reversed.

Programs

  • Maple
    A119468_row := proc(n) local s,t,k;
      s := series(exp(z*x)/(1-tanh(x)),x,n+2);
      t := factorial(n)*coeff(s,x,n); seq(coeff(t,z,k), k=(0..n)) end:
    for n from 0 to 7 do A119468_row(n) od; # Peter Luschny, Aug 01 2012
    # Alternatively:
    T := (n, k) -> 2^(n-k-1+0^(n-k))*binomial(n,k):
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, Nov 10 2017
  • Mathematica
    A[k_] := Table[If[m < n, 1, -1], {m, k}, {n, k}]; a = Join[{{1}}, Table[(-1)^n*CoefficientList[CharacteristicPolynomial[A[n], x], x], {n, 1, 10}]]; Flatten[a] (* Roger L. Bagula and Gary W. Adamson, Jan 25 2009 *)
    Table[Sum[Binomial[n,2j]Binomial[n-2j,k],{j,0,n-k}],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Dec 14 2022 *)
  • Sage
    R = PolynomialRing(QQ, 'x')
    def p(n,x) :
      return 1 if n==0 else add((-1)^n*binomial(n,k)*(x^(n-k)-1) for k in range(n))
    def A119468_row(n):
        x = R.gen()
        return [abs(cf) for cf in list((p(n,x-1)-p(n,x+1))/2+x^n)]
    for n in (0..8) : print(A119468_row(n)) # Peter Luschny, Jul 22 2012

Formula

G.f.: (1 - x - xy)/(1 - 2x - 2x*y + 2x^2*y + x^2*y^2).
Number triangle T(n,k) = Sum_{j=0..n} binomial(n,j)*binomial(j,k)*(1+(-1)^(j-k))/2.
Define matrix: A(n,m,k) = If[m < n, 1, -1];
p(x,k) = CharacteristicPolynomial[A[n,m,k],x]; then t(n,m) = coefficients(p(x,n)). - Roger L. Bagula and Gary W. Adamson, Jan 25 2009
E.g.f.: exp(x*z)/(1-tanh(x)). - Peter Luschny, Aug 01 2012
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) - T(n-2,k-2) for n >= 2, T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 10 2013
E.g.f.: [(e^(2t)+1)/2] e^(tx) = e^(P.(x)t), so this is an Appell sequence with lowering operator D = d/dx and raising operator R = x + 2/(e^(-2D)+1), i.e., D P_n(x) = n P_{n-1}(x) and R p_n(x) = P_{n+1}(x) where P_n(x) = [(x+2)^n + x^n]/2. Also, (P.(x)+y)^n = P_n(x+y), umbrally. R = x + 1 + D - 2 D^3/3! + ... contains the e.g.f.(D) mod signs of A009006 and A155585 and signed, aerated A000182, the zag numbers, so the unsigned differential component 2/[e^(2D)+1] = 2 Sum_{n >= 0} Eta(-n) (-2D)^n/n!, where Eta(s) is the Dirichlet eta function, and 2 *(-2)^n Eta(-n) = (-1)^n (2^(n+1)-4^(n+1)) Zeta(-n) = (2^(n+1)-4^(n+1)) B(n+1)/(n+1) with Zeta(s), the Riemann zeta function, and B(n), the Bernoulli numbers. The polynomials PI_n(x) of A081733 are the umbral compositional inverses of this sequence, i.e., P_n(PI.(x)) = x^n = PI_n(P.(x)) under umbral composition. Aside from the signs and the main diagonals, multiplying this triangle by 2 gives the face-vectors of the hypercubes A038207. - Tom Copeland, Sep 27 2015
T(n,k) = 2^(n-k-1+0^(n-k))*binomial(n, k). - Peter Luschny, Nov 10 2017

A105728 Triangle read by rows: T(n,1) = 1, T(n,n) = n and for 1 < k < n: T(n,k) = T(n-1,k-1) + 2*T(n-1,k).

Original entry on oeis.org

1, 1, 2, 1, 5, 3, 1, 11, 11, 4, 1, 23, 33, 19, 5, 1, 47, 89, 71, 29, 6, 1, 95, 225, 231, 129, 41, 7, 1, 191, 545, 687, 489, 211, 55, 8, 1, 383, 1281, 1919, 1665, 911, 321, 71, 9, 1, 767, 2945, 5119, 5249, 3487, 1553, 463, 89, 10, 1, 1535, 6657, 13183, 15617, 12223, 6593, 2479, 641, 109, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 18 2005

Keywords

Comments

Sum of n-th row = 3^(n-1): Sum_{k=1..n} T(n,k) = A000244(n-1);
for n>1: T(n,2) = A083329(n-1), T(n,n-1) = A028387(n-2).

Examples

			Triangle begins as:
  1;
  1,  2;
  1,  5,  3;
  1, 11, 11,  4;
  1, 23, 33, 19,  5;
  1, 47, 89, 71, 29, 6;
...
		

Crossrefs

Programs

  • Haskell
    a105728 n k = a105728_tabl !! (n-1) !! (k-1)
    a105728_row n = a105728_tabl !! (n-1)
    a105728_tabl = iterate (\row -> zipWith (+) ([0] ++ tail row ++ [1]) $
                                    zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Jul 22 2013
    
  • Magma
    function T(n,k)
      if k eq 1 then return 1;
      elif k eq n then return n;
      else return T(n-1,k-1) + 2*T(n-1,k);
      end if;
      return T;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 13 2019
    
  • Maple
    T:= proc(n, k) option remember;
          if k=1 then 1
        elif k=n then n
        else T(n-1, k-1) + 2*T(n-1, k)
          fi
        end:
    seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Nov 13 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==1, 1, If[k==n, n, T[n-1, k-1] + 2*T[n-1, k]]];
    Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Nov 13 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==1): return 1
        elif (k==n): return n
        else: return T(n-1,k-1) + 2*T(n-1, k)
    [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 13 2019

A185342 Triangle of successive recurrences in columns of A117317(n).

Original entry on oeis.org

2, 4, -4, 6, -12, 8, 8, -24, 32, -16, 10, -40, 80, -80, 32, 12, -60, 160, -240, 192, -64, 14, -84, 280, -560, 672, -448, 128, 16, -112, 448, -1120, 1792, -1792, 1024, -256, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512, 20, -180, 960, -3360, 8064
Offset: 0

Views

Author

Paul Curtz, Jan 26 2012

Keywords

Comments

A117317 (A):
1
2 1
4 5 1
8 16 9 1
16 44 41 14 1
32 112 146 85 20 1
64 272 456 377 155 27 1
have for their columns successive signatures
(2) (4,-4) (6,-12,8) (8,-24, 32, -16) (10,-40,80,-80,32) i.e. a(n).
Take based on abs(A133156) (B):
1
2 0
4 1 0
8 4 0 0
16 12 1 0 0
32 32 6 0 0 0
64 80 24 1 0 0 0.
The recurrences of successive columns are also a(n). a(n) columns: A005843(n+1), A046092(n+1), A130809, A130810, A130811, A130812, A130813.

Examples

			Triangle T(n,k),for 1<=k<=n, begins :
2                                         (1)
4    -4                                   (2)
6   -12   8                               (3)
8   -24  32   -16                         (4)
10  -40  80   -80   32                    (5)
12  -60 160  -240  192   -64              (6)
14  -84 280  -560  672  -448  128         (7)
16 -112 448 -1120 1792 -1792 1024 -256    (8)
Successive rows can be divided by A171977.
		

Crossrefs

Cf. For (A): A053220, A056243. For (B): A000079, A001787, A001788, A001789. For A193862: A115068 (a Coxeter group). For (2): A014480 (also (3),(4),(5),..); also A053220 and A001787.
Cf. A007318.

Programs

  • Mathematica
    Table[(-1)*Binomial[n, k]*(-2)^k, {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Jun 27 2017 *)
  • PARI
    for(n=1,20, for(k=1,n, print1((-2)^(k+1)*binomial(n,k)/2, ", "))) \\ G. C. Greubel, Jun 27 2017

Formula

Take A133156(n) without 1's or -1's double triangle (C)=
2
4
8 -4
16 -12
32 -32 6
64 -80 24
128 -192 80 -8
256 -448 240 -40
512 -1024 672 -160 10;
a(n) is increasing odd diagonals and increasing (sign changed) even diagonals. Rows sum of (C) = A201629 (?) Another link between Chebyshev polynomials and cos( ).
Absolute values: A013609(n) without 1's. Also 2*A193862 = (2*A002260)*A135278.
T(n,k) = T(n-1,k) - 2*T(n-1,k-1) for k>1, T(n,1) = 2*n = 2*T(n-1,1) - T(n-2,1). - Philippe Deléham, Feb 11 2012
T(n,k) = (-1)* Binomial(n,k)*(-2)^k, 1<=k<=n. - Philippe Deléham, Feb 11 2012
Showing 1-6 of 6 results.