cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115076 Number of 2 X 2 symmetric matrices over Z(n) having determinant 1.

Original entry on oeis.org

1, 4, 6, 12, 30, 24, 42, 48, 54, 120, 110, 72, 182, 168, 180, 192, 306, 216, 342, 360, 252, 440, 506, 288, 750, 728, 486, 504, 870, 720, 930, 768, 660, 1224, 1260, 648, 1406, 1368, 1092, 1440, 1722, 1008, 1806, 1320, 1620, 2024, 2162, 1152, 2058, 3000
Offset: 1

Views

Author

T. D. Noe, Jan 12 2006

Keywords

Comments

a(1)=1 because the matrix of all zeros has determinant 0, but 0=1 (mod 1).

Crossrefs

Cf. A000056 (order of the group SL(2, Z_n)), A175647, A243380.

Programs

  • Mathematica
    Table[cnt=0; Do[m={{a, b}, {b, c}}; If[Det[m, Modulus->n]==1, cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}]; cnt, {n, 50}]
    f[p_, e_] := If[Mod[p, 4] == 1, (p+1)*p^(2*e-1), (p-1)*p^(2*e-1)]; f[2, 1] = 4; f[2, e_] := 3*2^(2*e-2); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    a(n)={my(v=vector(n)); for(i=0, n-1, for(j=0, n-1, v[i*j%n+1]++)); sum(i=0, n-1, v[(i^2+1)%n+1])} \\ Andrew Howroyd, Jul 04 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); p^(2*e-1)*if(p==2, if(e==1, 2, 3/2), if(p%4==1, p+1, p-1)))} \\ Andrew Howroyd, Jul 04 2018

Formula

Multiplicative with a(2^1) = 4, a(2^e) = 3*2^(2*e-2) for e > 1, a(p^e) = (p+1)*p^(2*e-1) for p mod 4 == 1, a(p^e) = (p-1)*p^(2*e-1) for p mod 4 == 3. - Andrew Howroyd, Jul 04 2018
Sum_{k=1..n} a(k) ~ c * n^3, where c = (5/(2*Pi^2)) * A175647 * A243380 = 0.282098596071... . - Amiram Eldar, Aug 28 2023