cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A115082 Column 1 of triangle A115080.

Original entry on oeis.org

1, 2, 5, 20, 94, 507, 3009, 19350, 132920, 966962, 7396366, 59173897, 492995320, 4262193275, 38125138575, 351960913470, 3346157796060, 32700768584100, 327957494280000, 3370522049859990, 35451669429671520, 381183654441916290
Offset: 0

Views

Author

Paul D. Hanna, Jan 13 2006

Keywords

Crossrefs

Cf. A115080, A115081 (column 0), A115083 (column 2), A115084 (row sums); A115087.
Cf. A000108.

Programs

  • PARI
    {a(n)=sum(k=0,(n+1)\2,binomial(2*n-2*k,n-k)/(n-k+1)*binomial(2*k,k)/(k+1) *(k+1)!*binomial(n+1,2*k)/2^k)} \\ Paul D. Hanna, Feb 18 2007

Formula

From Paul D. Hanna, Feb 18 2007: (Start)
a(n) = A115081(n) + n*A115081(n-1).
a(n) = Sum_{k=0..[(n+1)/2]} A000108(n-k)*A000108(k)*(k+1)!*C(n+1,2*k)/2^k, where A000108(n) = C(2*n,n)/(n+1) is the n-th Catalan number. (End)

A115085 Triangle, read by rows, where T(n,k) equals the dot product of the vector of terms in row n-1 from T(n-1,k) to T(n-1,n-1) with the vector of terms in column k+1 from T(k+1,k+1) to T(n,k+1): T(n,k) = Sum_{j=0..n-k-1} T(n-1,j+k)*T(j+k+1,k+1) for n>k+1>0, with T(n,n) = 1 and T(n,n-1) = n (n>=1).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 12, 5, 3, 1, 58, 21, 7, 4, 1, 321, 102, 32, 9, 5, 1, 1963, 579, 158, 45, 11, 6, 1, 13053, 3601, 933, 226, 60, 13, 7, 1, 92946, 24426, 5939, 1395, 306, 77, 15, 8, 1, 702864, 176858, 41385, 9097, 1977, 398, 96, 17, 9, 1, 5599204, 1359906, 306070
Offset: 0

Views

Author

Paul D. Hanna, Jan 13 2006

Keywords

Comments

Triangle A115080 is the dual of this triangle.

Examples

			T(n,k)=[T(n-1,k),T(n-1,k+1),..,T(n-1,n-1)]*[T(k+1,k+1),T(k+2,k+1),..,T(n,k+1)]:
12 = [3,2,1]*[1,2,5] = 3*1 + 2*2 + 1*5;
21 = [5,3,1]*[1,3,7] = 5*1 + 3*3 + 1*7;
102 = [21,7,4,1]*[1,3,7,32] = 21*1 + 7*3 + 4*7 + 1*32;
158 = [32,9,5,1]*[1,4,9,45] = 32*1 + 9*4 + 5*9 + 1*45.
Triangle begins:
1;
1, 1;
3, 2, 1;
12, 5, 3, 1;
58, 21, 7, 4, 1;
321, 102, 32, 9, 5, 1;
1963, 579, 158, 45, 11, 6, 1;
13053, 3601, 933, 226, 60, 13, 7, 1;
92946, 24426, 5939, 1395, 306, 77, 15, 8, 1;
702864, 176858, 41385, 9097, 1977, 398, 96, 17, 9, 1;
5599204, 1359906, 306070, 65310, 13195, 2691, 502, 117, 19, 10, 1;
46746501, 10996740, 2403792, 494022, 97701, 18353, 3549, 618, 140, 21, 11, 1;
407019340, 93136545, 19799468, 3970878, 755834, 140178, 24691, 4563, 746, 165, 23, 12, 1; ...
		

Crossrefs

Cf. A115086 (column 0), A115087 (column 1), A115088 (column 2), A115089 (row sums); A115080 (dual triangle).

Programs

  • PARI
    {T(n,k)=if(n==k,1,if(n==k+1,n, sum(j=0,n-k-1,T(n-1,j+k)*T(j+k+1,k+1))))}
    for(n=0,12,for(k=0,n, print1(T(n,k),", "));print(""))

A115086 Column 0 of triangle A115085.

Original entry on oeis.org

1, 1, 3, 12, 58, 321, 1963, 13053, 92946, 702864, 5599204, 46746501, 407019340, 3682922657, 34519445611, 334288656446, 3336972646500, 34270606413428, 361466138304372, 3909661505975148, 43305438098350844, 490632571238216052
Offset: 0

Views

Author

Paul D. Hanna, Jan 13 2006

Keywords

Crossrefs

Cf. A115085, A115087 (column 1), A115088 (column 2), A115089 (row sums); A115081.

A115088 Column 2 of triangle A115085.

Original entry on oeis.org

1, 3, 7, 32, 158, 933, 5939, 41385, 306070, 2403792, 19799468, 170676213, 1530176012, 14235081941, 136908376331, 1358591876186, 13876456179864, 145643421890800, 1568070473632644, 17295212337571836, 195161233968831068
Offset: 0

Views

Author

Paul D. Hanna, Jan 13 2006

Keywords

Crossrefs

Cf. A115085, A115086 (column 0), A115087 (column 1), A115089 (row sums); A115083.

A115089 Row sums of triangle A115085.

Original entry on oeis.org

1, 2, 6, 21, 91, 470, 2763, 17894, 125113, 932702, 7347025, 60761449, 524852444, 4716259252, 43936770258, 423178496553, 4203717419747, 42980494150963, 451494062943969, 4865135046178557, 53701937703205383, 606454041389250791
Offset: 0

Views

Author

Paul D. Hanna, Jan 13 2006

Keywords

Crossrefs

Cf. A115085, A115086 (column 0), A115087 (column 1), A115088 (column 2); A115084.
Showing 1-5 of 5 results.