cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115115 Number of 3-asymmetric rhythm cycles: binary necklaces of length 3n subject to the restriction that for any k if the k-th bead is of color 1 then the (k+n)-th and (k+2n)-th beads (modulo 3n) are of color 0.

Original entry on oeis.org

2, 4, 8, 24, 70, 232, 782, 2744, 9710, 34990, 127102, 466152, 1720742, 6391714, 23860936, 89479864, 336860182, 1272587758, 4822419422, 18325211326, 69810262088, 266548336954, 1019836872142, 3909374909672, 15011998757958
Offset: 1

Views

Author

Valery A. Liskovets, Jan 17 2006

Keywords

Crossrefs

Cf. A115114.

Programs

  • Mathematica
    a[n_] := (Sum[EulerPhi[3d], {d, Divisors[n]}] + Sum[Boole[CoprimeQ[3, d]] EulerPhi[d] 4^(n/d), {d, Divisors[n]}])/(3n);
    Array[a, 25] (* Jean-François Alcover, Aug 28 2019 *)
  • PARI
    a(n) = (sumdiv(n, d, eulerphi(3*d)) + sumdiv(n, d, if (gcd(d, 3)==1, eulerphi(d)*4^(n/d))))/(3*n); \\ Michel Marcus, Aug 28 2019

Formula

a(n) = (Sum_{d|n}phi(3d) + Sum_{d|n, (3, d)=1}phi(d)*4^(n/d))/(3n), where phi(n) is the Euler function A000010.
a(n) ~ 4^n / (3*n). - Vaclav Kotesovec, Aug 28 2019