cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115116 Number of imprimitive (periodic) asymmetric rhythm cycles: ones having nontrivial shift automorphisms. Asymmetric rhythm cycles (A115114): binary necklaces of length 2n subject to the restriction that for any k if the k-th bead is of color 1 then the (k+n)-th bead (modulo 2n) is of color 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 1, 6, 3, 2, 11, 2, 3, 30, 1, 2, 63, 2, 11, 162, 3, 2, 411, 26, 3, 1098, 11, 2, 3015, 2, 1, 8058, 3, 182, 22151, 2, 3, 61326, 411, 2, 170883, 2, 11, 479410, 3, 2, 1345211, 158, 2955, 3798246, 11, 2, 10761723, 8078, 411, 30585834, 3, 2, 87191759, 2, 3, 249057230, 1, 61346, 713205963, 2, 11, 2046590850, 173775, 2
Offset: 1

Views

Author

Valery A. Liskovets, Jan 17 2006

Keywords

Comments

a(2^k)=1 for all k including k=0.
a(p)=2, a(2p)=3, a(4p)=11, etc. for an odd prime p.

Crossrefs

Programs

  • Mathematica
    A006575[n_] := DivisorSum[n, If[BitAnd[#, 1] == 1, MoebiusMu[#] (3^(n/#) - 1), 0]&]/(2n);
    A115114[n_] := Sum[EulerPhi[2d] + Boole[OddQ[d]] EulerPhi[d] 3^(n/d), {d, Divisors[n]}]/(2n);
    a[n_] := A115114[n] - A006575[n];
    Array[a, 60] (* Jean-François Alcover, Aug 29 2019 *)
  • PARI
    A006575(n) = (sumdiv(n,d,bitand(d,1)*moebius(d)*(3^(n/d)-1)) / (2*n)); \\ From A006575.
    A115114(n) = (1/(2*n))*(sumdiv(n,d,eulerphi(2*d)+(bitand(d,1)*eulerphi(d)*(3^(n/d)))));
    A115116(n) = (A115114(n) - A006575(n)); \\ Antti Karttunen, Jan 19 2020

Formula

a(n) = A115114(n) - A006575(n).

Extensions

More terms from Antti Karttunen, Jan 19 2020