cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115125 A sequence related to Catalan numbers A000108.

Original entry on oeis.org

1, 2, 4, 16, 80, 448, 2688, 16896, 109824, 732160, 4978688, 34398208, 240787456, 1704034304, 12171673600, 87636049920, 635361361920, 4634400522240, 33985603829760, 250420238745600, 1853109766717440, 13765958267043840, 102618961627054080, 767411365211013120
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

Essentially identical to A025225.
The convolution of this sequence with the sequence {(-1)^n} is A064062 (see also A062992).
The sequence A064062 appears in the Derrida et al. 1992 reference (see A064094) for alpha=2, beta=1 (or alpha=1, beta=2).

Crossrefs

Programs

  • Magma
    [1] cat [2^n*Binomial(2*n-2, n-1)/n: n in [1..30]]; // G. C. Greubel, May 03 2018
  • Maple
    a:= n-> `if`(n=0, 1, 2^n*binomial(2*n-2, n-1)/n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 25 2022
  • Mathematica
    a[0] = 1; a[n_] := 2^n*CatalanNumber[n - 1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 09 2013 *)
  • PARI
    a(n)=if(n==0,1,polcoeff((1-sqrt(1-8*x+x*O(x^n)))/2,n)); \\ Joerg Arndt, May 14 2013
    

Formula

a(n) = C(n-1)*2^n, n>=1, a(0):=1, with C(n):=A000108(n) (Catalan).
G.f.: 1 + (2*x)*c(2*x) with c(x):=(1-sqrt(1-4*x))/(2*x), the o.g.f. of Catalan numbers A000108.
a(n) = A025225(n), n>0. - R. J. Mathar, Aug 11 2008
G.f.: (3 - sqrt(1-8*x))/2 = 2 - U(0) where U(k)=1 - 2*x/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 29 2012
G.f.: 2 - 1/Q(0), where Q(k)= 1 + (8*k+2)*x/(k+1 - x*(2*k+2)*(8*k+6)/(2*x*(8*k+6) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013