A115125 A sequence related to Catalan numbers A000108.
1, 2, 4, 16, 80, 448, 2688, 16896, 109824, 732160, 4978688, 34398208, 240787456, 1704034304, 12171673600, 87636049920, 635361361920, 4634400522240, 33985603829760, 250420238745600, 1853109766717440, 13765958267043840, 102618961627054080, 767411365211013120
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672.
Programs
-
Magma
[1] cat [2^n*Binomial(2*n-2, n-1)/n: n in [1..30]]; // G. C. Greubel, May 03 2018
-
Maple
a:= n-> `if`(n=0, 1, 2^n*binomial(2*n-2, n-1)/n): seq(a(n), n=0..25); # Alois P. Heinz, Jul 25 2022
-
Mathematica
a[0] = 1; a[n_] := 2^n*CatalanNumber[n - 1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 09 2013 *)
-
PARI
a(n)=if(n==0,1,polcoeff((1-sqrt(1-8*x+x*O(x^n)))/2,n)); \\ Joerg Arndt, May 14 2013
Formula
a(n) = C(n-1)*2^n, n>=1, a(0):=1, with C(n):=A000108(n) (Catalan).
G.f.: 1 + (2*x)*c(2*x) with c(x):=(1-sqrt(1-4*x))/(2*x), the o.g.f. of Catalan numbers A000108.
a(n) = A025225(n), n>0. - R. J. Mathar, Aug 11 2008
G.f.: (3 - sqrt(1-8*x))/2 = 2 - U(0) where U(k)=1 - 2*x/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 29 2012
G.f.: 2 - 1/Q(0), where Q(k)= 1 + (8*k+2)*x/(k+1 - x*(2*k+2)*(8*k+6)/(2*x*(8*k+6) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013
Comments