cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A115127 Second (k=2) triangle of numbers related to totally asymmetric exclusion process (case alpha=1, beta=1).

Original entry on oeis.org

3, 6, 7, 10, 16, 19, 15, 30, 47, 56, 21, 50, 95, 146, 174, 28, 77, 170, 311, 471, 561, 36, 112, 280, 586, 1043, 1562, 1859, 45, 156, 434, 1015, 2044, 3564, 5291, 6292, 55, 210, 642, 1652, 3682, 7204, 12363, 18226, 21658, 66, 275, 915, 2562, 6230, 13392, 25623
Offset: 2

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

This is the second floor (k=2) of a pyramid of numbers, called X(1,1,k=2,n,m) with n>=m+1>=2. One could use offset n>=1 and add a zero main diagonal.
The column sequences give for n>=m+1 and m=1..7: A000217, A005581, A024191, A115129, A115130, A115132, A115133.
The diagonal sequences give for M:=n-m=1..3: A071716, A071726, A115134.

Examples

			[3];[6,7];[10,16,19];[15,30,47,56];...
Main diagonal (n-m=1) example: a(3,2)= 7 = 5 + 2 because
A115126(3,2)=5 and A115126(2,2)=2.
Subdiagonal (n-m>1) example: a(4,2)= 16 = 9 + 7 because
A115126(4,2)=9 and a(3,2)=7.
		

Crossrefs

Row sums give A115128.

Formula

a(n,m)= b(n,m) + b(n-1,m) with b(n,m):=A115126(n,m) if n=m+1 (main diagonal), A115126(n,m) + a(n,-1,m) if n>m+1 (subdiagonals) and 0 if n

A115132 Partial sums of A064059.

Original entry on oeis.org

132, 561, 1562, 3564, 7204, 13392, 23388, 38892, 62148, 96063, 144342, 211640, 303732, 427702, 592152, 807432, 1085892, 1442157, 1893426, 2459796, 3164612, 4034844, 5101492, 6400020, 7970820, 9859707, 12118446, 14805312, 17985684
Offset: 0

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Crossrefs

Cf. A115130 (fifth column of A115127).

Programs

  • Mathematica
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{132,561,1562,3564,7204,13392,23388,38892},40] (* Harvey P. Dale, Jul 22 2024 *)

Formula

G.f.:(132-495*x+770*x^2-616*x^3+252*x^4-42*x^5)/(1-x)^8.
a(n)=A115127(n+6, 6), n>=1, a(0):=C(6)=132, with C(n):=A000108(n) (Catalan).

A180016 Partial sums of number of n-step closed paths on hexagonal lattice A002898.

Original entry on oeis.org

1, 1, 7, 19, 109, 469, 2509, 12589, 67399, 358039, 1946395, 10622755, 58600531, 324978643, 1813780243, 10169519635, 57273912685, 323755931917, 1836345339961, 10446793409041, 59591722204861, 340755882430381
Offset: 0

Author

Jonathan Vos Post, Jan 13 2011

Keywords

Comments

Also, number of closed paths of length <= n on the honeycomb lattice. The analog on the square lattice is A115130.
The subsequence of primes begins 7, 19, 109, 12589, 67399.

Examples

			a(0) = 1 because there is a unique null walk on no points.
a(1) = 1 because there are no closed paths of length 1 (which connects the origin with one of 6 other points before symmetry is considered).
a(2) = 7 because one adds the 6 closed paths of length 2 (which go from origin to one of 6 surrounding points on the lattice, and return in the opposite directions).
a(8) = 1 + 0 + 6 + 12 + 90 + 360 + 2040 + 10080 + 54810 = 67399.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(-2)^(nn-i)*Binomial[i, j]^3*Binomial[nn, i], {i, 0, nn}, {j, 0, i}],{nn,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 24 2012 *)

Formula

a(n) = Sum_{i=0..n} A002898(i).
D-finite with recurrence: n^2*a(n) = (2*n-1)*n*a(n-1) + (n-1)*(23*n-24)*a(n-2) + 12*(n-4) * (n-1)*a(n-3) - 36*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ 3*sqrt(3)*6^n/(5*Pi*n). - Vaclav Kotesovec, Oct 24 2012
G.f.: hypergeom([1/3,1/3],[1],-27*x*(2*x+1)^2/((3*x+1)*(6*x-1)^2))/((1-x)*(3*x+1)^(1/3)*(1-6*x)^(2/3)). - Mark van Hoeij, Apr 17 2013
Showing 1-3 of 3 results.