A115156 Smallest number having exactly n ones in binary representation and also exactly n prime factors (counted with multiplicity).
2, 6, 28, 54, 405, 486, 2808, 4860, 21870, 40824, 192456, 524160, 708588, 4059072, 14348907, 58576608, 123731712, 462944160, 1837080000, 3874204890, 11809800000, 48183984000, 65086642152, 339033848832, 1360965131136, 2928898896840, 6595446404736
Offset: 1
Keywords
Examples
a(5) = 3*3*3*3*5 = 405_10 = 110010101_2. a(10) = 2*2*2*3*3*3*3*3*3*7 = 40824_10 = 1001111101111000_2. a(18) = 2*2*2*2*2*3*3*3*3*3*3*3*3*3*3*5*7*7 = 462944160_10 = 11011100101111111011110100000_2. - _Robert G. Wilson v_
Programs
-
Mathematica
Lk[n_] := Block[{k = 2^n - 1}, While[n != Plus @@ IntegerDigits[k, 2] || n != Plus @@ (Transpose[FactorInteger@k][[2]]), k++ ]; k]; L = {}; Do[v = Lk[n]; Print[{n, v}]; AppendTo[L, v], {n, 2, 16}]; L (Resta) t = Table[0, {20}]; f[n_] := Block[{b = Count[ IntegerDigits[n, 2], 1], e = Plus @@ Last /@ FactorInteger@n}, If[b == e, b, 0]]; Do[ a = f@n; If[a > 0 && t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 550000000}]; t (* Robert G. Wilson v *) f[n_] := Min[ Select[ FromDigits[ #, 2] & /@ Permutations[ Join[ Table[0, {Max[6, 2n/3]}], Table[1, {n}]]], Plus @@ Last /@ FactorInteger@# == n &]]; Array[f, 18] (* Robert G. Wilson v *)
Extensions
a(14)-a(17) from Giovanni Resta, Jan 18 2006
a(14)-a(18) from Robert G. Wilson v, Jan 18 2006
a(19) from Robert G. Wilson v, Jan 22 2006
a(20)-a(24) from Donovan Johnson, Apr 07 2008
a(25)-a(27) from Donovan Johnson, Jul 30 2011
Comments