A115167 Odd numbers k such that k-1 and k+1 have the same number of prime divisors with multiplicity.
5, 19, 29, 43, 51, 55, 67, 69, 77, 89, 115, 151, 171, 173, 187, 189, 197, 233, 237, 243, 245, 249, 267, 271, 283, 285, 291, 295, 307, 317, 329, 341, 343, 349, 355, 403, 405, 411, 427, 429, 435, 437, 461, 489, 491, 507, 569, 571, 593, 597, 603, 605, 653, 665
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Subsequence of A280382.
Programs
-
Mathematica
s = {}; o1 = 0; Do[o2 = PrimeOmega[n]; If[o1 == o2, AppendTo[s, n-1]]; o1 = o2, {n, 2, 666, 2}]; s (* Amiram Eldar, Sep 23 2019 *) Select[Mean/@SequencePosition[PrimeOmega[Range[700]],{x_,,x}],OddQ] (* Harvey P. Dale, Jan 11 2024 *)
-
PARI
g(n) = forstep(x=3, n, 2, p1=bigomega(x-1); p2=bigomega(x+1); if(p1==p2, print1(x",")))
-
Python
from sympy import primeomega def aupto(limit): prv, nxt, alst = 1, 2, [] for n in range(3, limit+1, 2): if prv == nxt: alst.append(n) prv, nxt = nxt, primeomega(n+3) return alst print(aupto(665)) # Michael S. Branicky, May 19 2021