cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115167 Odd numbers k such that k-1 and k+1 have the same number of prime divisors with multiplicity.

Original entry on oeis.org

5, 19, 29, 43, 51, 55, 67, 69, 77, 89, 115, 151, 171, 173, 187, 189, 197, 233, 237, 243, 245, 249, 267, 271, 283, 285, 291, 295, 307, 317, 329, 341, 343, 349, 355, 403, 405, 411, 427, 429, 435, 437, 461, 489, 491, 507, 569, 571, 593, 597, 603, 605, 653, 665
Offset: 1

Views

Author

Cino Hilliard, Mar 03 2006

Keywords

Crossrefs

Subsequence of A280382.

Programs

  • Mathematica
    s = {}; o1 = 0; Do[o2 = PrimeOmega[n]; If[o1 == o2, AppendTo[s, n-1]]; o1 = o2, {n, 2, 666, 2}]; s (* Amiram Eldar, Sep 23 2019 *)
    Select[Mean/@SequencePosition[PrimeOmega[Range[700]],{x_,,x}],OddQ] (* Harvey P. Dale, Jan 11 2024 *)
  • PARI
    g(n) = forstep(x=3, n, 2, p1=bigomega(x-1); p2=bigomega(x+1); if(p1==p2, print1(x",")))
    
  • Python
    from sympy import primeomega
    def aupto(limit):
      prv, nxt, alst = 1, 2, []
      for n in range(3, limit+1, 2):
        if prv == nxt: alst.append(n)
        prv, nxt = nxt, primeomega(n+3)
      return alst
    print(aupto(665)) # Michael S. Branicky, May 19 2021