cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115169 Integers b > 0 for which there exists a positive integer a <= b such that (a^2 + b^2)/(1 + ab) is an integer.

Original entry on oeis.org

1, 8, 27, 30, 64, 112, 125, 216, 240, 343, 418, 512, 729, 1000, 1020, 1331, 1560, 1728, 2133, 2197, 2744, 3120, 3375, 4096, 4913, 5822, 5832, 6859, 7770, 8000, 9261, 10648, 12167, 13824, 15625, 16256, 16800, 17576, 18957, 19683
Offset: 1

Views

Author

John W. Layman, Mar 03 2006

Keywords

Comments

All positive cubes are in this sequence.
Indeed, if b = k^3, then for a = k, we have a^2 + b^2 = k^2 + k^6 = (1 + k^4)*k^2 = (a*b + 1)*a^2. More generally, if the ratio (a^2 + b^2)/(a*b + 1) is an integer, it is equal to gcd(a,b)^2, thus in particular a perfect square. (This was Question 6 in the 1988 IMO.) All solutions (a,b) are member of a sequence {(x(n), x(n+1)); n = 1,2,...} where x = (0, k, k^3, k^5 - k, ...) with x(n+1) = k^2*x(n) - x(n-1) and some k >= 2, cf. A052530 for k = 2, A065100 for k = 3. (One might consider >= 0 instead > 0 in the definition, but a = 0 yields a solution for any b.) - M. F. Hasler, Jun 12 2019

Examples

			(2^2+8^2)/(1+2*8) = 68/17 = 4, an integer, so 8 is a term of the series.
From _M. F. Hasler_, Jun 12 2019: (Start)
The list of solutions starts:
     a      b     a^2+b^2   a*b+1   ratio
   ----------------------------------------
     1      1          2       2       1
     8      2         68      17       4
    27      3        738      82       9
    30      8        964     241       4
    64      4       4112     257      16
   112     30      13444    3361       4
   125      5      15650     626      25
   216      6      46692    1297      36
   240     27      58329    6481       9
   343      7     117698    2402      49
   418    112     187268   46817       4
   512      8     262208    4097      64
   729      9     531522    6562      81
  1000     10    1000100   10001     100
  1020     64    1044496   65281      16
(End)
		

Crossrefs

Cf. A000578 (cubes), A052530 (subsequence of terms for ratio 2^2, for n >= 2), A065100 (subsequence of terms for ratio 3^2).

Programs

  • PARI
    isok(n) = for(m=0, n, if (denominator((m^2+n^2)/(1+m*n))==1, return(1))); return (0); \\ Michel Marcus, Sep 18 2017
    
  • PARI
    is_A115169(n)=for(a=1,n\3+1,(a^2+n^2)%(1+a*n)||return(1)) \\ M. F. Hasler, Jun 12 2019
    
  • PARI
    is(n)=my(s=sqrtnint(n,3),n2=n^2); for(b=1,s, if((n2+b^2)%(n*b+1)==0, return(1))); for(K=2,sqrtint((n2+(s+1)^2)\(n*s+n+1)), my(k=K^2); if(issquare(k^2*n2-4*n2+4*k), return(1))); 0 \\ Charles R Greathouse IV, Nov 08 2021

Extensions

Edited by M. F. Hasler, Jun 12 2019