A115169 Integers b > 0 for which there exists a positive integer a <= b such that (a^2 + b^2)/(1 + ab) is an integer.
1, 8, 27, 30, 64, 112, 125, 216, 240, 343, 418, 512, 729, 1000, 1020, 1331, 1560, 1728, 2133, 2197, 2744, 3120, 3375, 4096, 4913, 5822, 5832, 6859, 7770, 8000, 9261, 10648, 12167, 13824, 15625, 16256, 16800, 17576, 18957, 19683
Offset: 1
Keywords
Examples
(2^2+8^2)/(1+2*8) = 68/17 = 4, an integer, so 8 is a term of the series. From _M. F. Hasler_, Jun 12 2019: (Start) The list of solutions starts: a b a^2+b^2 a*b+1 ratio ---------------------------------------- 1 1 2 2 1 8 2 68 17 4 27 3 738 82 9 30 8 964 241 4 64 4 4112 257 16 112 30 13444 3361 4 125 5 15650 626 25 216 6 46692 1297 36 240 27 58329 6481 9 343 7 117698 2402 49 418 112 187268 46817 4 512 8 262208 4097 64 729 9 531522 6562 81 1000 10 1000100 10001 100 1020 64 1044496 65281 16 (End)
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..500
- Steve Chow, You, Me and The Legend of Question Six, BlackPenRedPen, YouTube, Apr 20 2020.
- I. Lauko, G. Pinter and L. Pinter, Another Step Further... On a Problem of the 1988 IMO, Math. Mag. 79 (2006), 45-53.
- Simon Pampena, The Legend of Question Six, Numberphile, YouTube, Aug 16 2016.
Crossrefs
Programs
-
PARI
isok(n) = for(m=0, n, if (denominator((m^2+n^2)/(1+m*n))==1, return(1))); return (0); \\ Michel Marcus, Sep 18 2017
-
PARI
is_A115169(n)=for(a=1,n\3+1,(a^2+n^2)%(1+a*n)||return(1)) \\ M. F. Hasler, Jun 12 2019
-
PARI
is(n)=my(s=sqrtnint(n,3),n2=n^2); for(b=1,s, if((n2+b^2)%(n*b+1)==0, return(1))); for(K=2,sqrtint((n2+(s+1)^2)\(n*s+n+1)), my(k=K^2); if(issquare(k^2*n2-4*n2+4*k), return(1))); 0 \\ Charles R Greathouse IV, Nov 08 2021
Extensions
Edited by M. F. Hasler, Jun 12 2019
Comments