cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115217 Diagonal sums of "correlation triangle" for 2^n.

Original entry on oeis.org

1, 2, 6, 13, 30, 62, 133, 270, 558, 1125, 2286, 4590, 9253, 18542, 37230, 74533, 149358, 298862, 598309, 1196910, 2394990, 4790565, 9583470, 19168110, 38340901, 76684142, 153377646, 306759973, 613538670, 1227086702, 2454210853
Offset: 0

Views

Author

Paul Barry, Jan 16 2006

Keywords

Comments

Diagonal sums of number triangle A003983.

Crossrefs

Cf. A003983.

Programs

  • Mathematica
    LinearRecurrence[{2,2,-3,-2,-2,4},{1,2,6,13,30,62},40] (* Harvey P. Dale, Oct 18 2021 *)

Formula

a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} [j<=k]*2^(k-j)*[j<=n-2k]*2^(n-2k-j).
From Paul Barry, Jan 18 2006: (Start)
G.f.: 1/((1-2*x)*(1-2*x^2)*(1-x^3)).
a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) - 2*a(n-4) - 2*a(n-5) + 4*a(n-6). (End)
E.g.f.: (exp(x)*(7 + 48*exp(x)) + 2*exp(-x/2)*cos(sqrt(3)*x/2) - 36*cosh(sqrt(2)*x) - 30*sqrt(2)*sinh(sqrt(2)*x))/21. - Stefano Spezia, Aug 28 2025