A115256 Diagonal sums of correlation triangle of central binomial coefficients.
1, 2, 8, 25, 90, 312, 1145, 4186, 15640, 58681, 222298, 845848, 3235385, 12418650, 47827992, 184688185, 714884186, 2772776984, 10774163001, 41932100698, 163430680600, 637793652281, 2491918144602, 9746480252952, 38157725306425
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
CoefficientList[Series[1/((Sqrt[1-4x])(Sqrt[1-4x^2])(1-x^3)), {x,0,30}], x] (* Harvey P. Dale, Feb 15 2012 *)
-
PARI
my(x='x+O('x^50)); Vec(1/(sqrt(1-4*x)*sqrt(1-4*x^2)*(1-x^3))) \\ G. C. Greubel, Mar 18 2017
Formula
G.f.: 1/(sqrt(1-4*x)*sqrt(1-4*x^2)*(1-x^3)).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} [j<=k]*C(2*k-2*j, k-j)*[j<=n-2*k]*C(2*n-4*k-2*j, n-2*k-j).
a(n) ~ sqrt(3) * 2^(2*n+7) / (189 * sqrt(Pi*n)). - Vaclav Kotesovec, Mar 02 2014
Conjecture: n*a(n) + 2*(-2*n+1)*a(n-1) + 4*(-n+1)*a(n-2) + 3*(5*n-8)*a(n-3) + 2*(2*n-1)*a(n-4) + 4*(n-1)*a(n-5) + 8*(-2*n+3)*a(n-6) = 0. - R. J. Mathar, Jun 22 2016
Comments