cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115256 Diagonal sums of correlation triangle of central binomial coefficients.

Original entry on oeis.org

1, 2, 8, 25, 90, 312, 1145, 4186, 15640, 58681, 222298, 845848, 3235385, 12418650, 47827992, 184688185, 714884186, 2772776984, 10774163001, 41932100698, 163430680600, 637793652281, 2491918144602, 9746480252952, 38157725306425
Offset: 0

Views

Author

Paul Barry, Jan 18 2006

Keywords

Comments

Diagonal sums of number triangle A115255.

Programs

  • Mathematica
    CoefficientList[Series[1/((Sqrt[1-4x])(Sqrt[1-4x^2])(1-x^3)), {x,0,30}], x] (* Harvey P. Dale, Feb 15 2012 *)
  • PARI
    my(x='x+O('x^50)); Vec(1/(sqrt(1-4*x)*sqrt(1-4*x^2)*(1-x^3))) \\ G. C. Greubel, Mar 18 2017

Formula

G.f.: 1/(sqrt(1-4*x)*sqrt(1-4*x^2)*(1-x^3)).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} [j<=k]*C(2*k-2*j, k-j)*[j<=n-2*k]*C(2*n-4*k-2*j, n-2*k-j).
a(n) ~ sqrt(3) * 2^(2*n+7) / (189 * sqrt(Pi*n)). - Vaclav Kotesovec, Mar 02 2014
Conjecture: n*a(n) + 2*(-2*n+1)*a(n-1) + 4*(-n+1)*a(n-2) + 3*(5*n-8)*a(n-3) + 2*(2*n-1)*a(n-4) + 4*(n-1)*a(n-5) + 8*(-2*n+3)*a(n-6) = 0. - R. J. Mathar, Jun 22 2016