cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115271 Partial sums of floor((n+4)/4)^2.

Original entry on oeis.org

1, 2, 3, 4, 8, 12, 16, 20, 29, 38, 47, 56, 72, 88, 104, 120, 145, 170, 195, 220, 256, 292, 328, 364, 413, 462, 511, 560, 624, 688, 752, 816, 897, 978, 1059, 1140, 1240, 1340, 1440, 1540, 1661, 1782, 1903, 2024, 2168, 2312, 2456, 2600, 2769, 2938
Offset: 0

Views

Author

Paul Barry, Jan 18 2006

Keywords

Comments

Central coefficients of number triangle A115268.

Programs

  • Mathematica
    Accumulate[Table[Floor[(n+4)/4]^2,{n,0,50}]] (* or *) LinearRecurrence[ {2,-1,0,2,-4,2,0,-1,2,-1},{1,2,3,4,8,12,16,20,29,38},50] (* Harvey P. Dale, Jun 07 2011 *)

Formula

G.f.: (1+x^4)/((1-x)^2*(1-x^4)^2).
a(n) = sum{k=0..n, floor((k+4)/2)^2}.
a(n) = A115268(2n, n).
a(n) = 2*a(n-1)-a(n-2)+2*a(n-4)-4*a(n-5)+ 2*a(n-6)- a(n-8)+2*a(n-9)-a(n-10) with a(0)=1, a(1)=2, a(2)=3, a(3)=4, a(4)=8, a(5)=12, a(6)=16, a(7)=20, a(8)=29, a(9)=38. - Harvey P. Dale, Jun 07 2011
a(n) = (2*n^3+18*n^2+61*n+75+3*(n+3)*(-1)^n+6*(n+4-(n+2)*(-1)^n)*(-1)^((2*n-1+(-1)^n)/4))/96. - Luce ETIENNE, Mar 17 2015