cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115274 a(n) = n + A115273(n), where A115273(n) = 0 for n = 1..3.

Original entry on oeis.org

1, 2, 3, 5, 7, 6, 9, 12, 9, 13, 17, 12, 17, 22, 15, 21, 27, 18, 25, 32, 21, 29, 37, 24, 33, 42, 27, 37, 47, 30, 41, 52, 33, 45, 57, 36, 49, 62, 39, 53, 67, 42, 57, 72, 45, 61, 77, 48, 65, 82, 51, 69, 87, 54, 73, 92, 57, 77, 97, 60, 81, 102, 63, 85, 107, 66, 89, 112, 69, 93, 117
Offset: 1

Views

Author

Zak Seidov, Jan 18 2006

Keywords

Comments

Three arithmetic progressions interlaced: a(1..3) = 1..3 and d = a(n+3)-a(n) = 4,5,3.

Crossrefs

Cf. A115273.

Programs

  • Maple
    seq(op([1+4*j,2+5*j,3+3*j]),j=0..100); # Robert Israel, May 11 2015
  • Mathematica
    Table[n+Floor[n/3]*Mod[n, 3], {n, 78}]
    LinearRecurrence[{0,0,2,0,0,-1},{1,2,3,5,7,6},80] (* Harvey P. Dale, Aug 06 2021 *)
  • PARI
    Vec(x*(3*x^4+3*x^3+3*x^2+2*x+1) / ((x-1)^2*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, May 11 2015

Formula

a(n) = n+floor(n/3)*(n mod 3), n = 1, 2, ...
a(n) = 2*a(n-3)-a(n-6). - Colin Barker, May 11 2015
G.f.: x*(3*x^4+3*x^3+3*x^2+2*x+1) / ((x-1)^2*(x^2+x+1)^2). - Colin Barker, May 11 2015
E.g.f.: (-5+12*x)*exp(x)/9 + (3+2*x)*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2)/9 + 5*exp(-x/2)*cos(sqrt(3)*x/2)/9. - Robert Israel, May 11 2015