A115277 Number of partitions of {1,...,n} into blocks such that no even sized block is repeated.
1, 1, 2, 5, 12, 37, 143, 562, 2320, 10941, 54865, 283890, 1604155, 9558226, 58668223, 384572975, 2631778832, 18576630237, 137919691717, 1060303298138, 8415786131309, 69538205444478, 591734670548037, 5194542789203877, 47127033586211659, 438972204436025198
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add( multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1), j=0..min( `if`(irem(i, 2)=0, 1, n), n/i)))) end: a:= n-> b(n$2): seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j! * b[n-i*j, i-1], {j, 0, Min[If[Mod[i, 2]==0, 1, n], n/i]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 25 2015, after Alois P. Heinz *)
Formula
E.g.f.: exp(sinh(x)) * Product {m >= 1} (1+x^(2*m)/(2*m)!).