cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115297 Treillis triangle: a triangle read by rows showing the coefficients of sum formulas of Treillis numbers (A115298). The k-th row (k>=1) contains a(n,k) for n=1 to (k+1)/2 (odd rows) and for n=1 to k/2 (even rows), where a(n,k) satisfies Sum_{n=1..[(k+1)/2_odd, k/2_even]} a(n,k). The last term of each row (and its only odd number) equals Prime(k+1)-2.

Original entry on oeis.org

1, 3, 2, 5, 4, 9, 2, 8, 11, 6, 10, 15, 4, 8, 14, 17, 6, 12, 16, 21, 2, 10, 14, 20, 27, 6, 12, 18, 26, 29, 4, 8, 16, 24, 28, 35, 6, 12, 22, 26, 34, 39, 2, 10, 18, 24, 32, 38, 41, 6, 16, 20, 30, 36, 40, 45, 4, 12, 18, 26, 34, 38, 44, 51, 10, 14, 24, 30, 36, 42, 50, 57, 6, 12, 20, 28, 32
Offset: 1

Views

Author

Keywords

Examples

			The computation for obtaining the coefficients of each row of the Treillis triangle are the paired differences between primes ascending and those descending. Only half-rows are to be considered for deducing such terms.
For the 13th row:
...................19-17,.23-13,.29-11,.31-7,.37-5,.41-3,.43-2
.....................2,.....10,....18,....24,...32,...38,...41
For the 14th row:
...................19-19,.23-17,.29-13,.31-11,.37-7,.41-5,.43-3,.47-2
.....................0,.....6,.....16,....20,....30,...36,...40,...45
From _Michael Somos_, Oct 17 2016: (Start)
Triangle:
1: 1,
2: 3,
3: 2, 5,
4: 4, 9,
5: 2, 8, 11,
6: 6, 10, 15,
7: 4, 8, 14, 17,
8: 6, 12, 16, 21,
... (End)
		

Crossrefs

Formula

For odd rows:
a(1, k) = a(1, k-1) - a(1, k-2)
a(2, k) = a(1, k-1) + [ a(2, k-1) - a(2, k-2) ]
a(3, k) = a(2, k-1) + [ a(3, k-1) - a(3, k-2) ]
...
a((k-1)/2, k) = a((k-3)/2, k-1) + [ a((k-1)/2, k-1) - a((k-1)/2, k-2) ]
a((k+1)/2, k) = Prime(k) - 2
and a((k-1)/2, k-1) = Prime(k-1) - 2
a((k-1)/2, k-2) = Prime(k-2) - 2
For even rows:
a(1, k) = a(1, k-1) + [ a(2, k-1) - a(1, k-2) ]
a(2, k) = a(2, k-1) + [ a(3, k-1) - a(2, k-2) ]
a(3, k) = a(3, k-1) + [ a(4, k-1) - a(3, k-2) ]
...
a((k-2)/2, k) = a((k-2)/2, k-1) + [ a(k/2, k-1) - a((k-2)/2, k-2) ]
a(k/2, k) = Prime(k) - 2
and a(k/2, k-1) = Prime(k-1) - 2
a((k-2)/2, k-2) = Prime(k-2) - 2
The recurrent prime formulas for odd and even rows are the following : prime(k_odd) = A000040(k_odd) = A115298(k) + Sum_{n=1..(k-3)/2} [ a(n,k-2) -2*a(n,k-1) ] + A000040(k-2) - A000040(k-1) +2; prime(k_even) = A000040(k_even) = A115298(k) + Sum_{n=1..(k-2)/2} [ a(n,k-2) -a((k-2)/2,k-2) -2*a(n,k-1) +a(1,k-1) ] + A000040(k-2) - A000040(k-1) + 2