A115314 a(n) = gcd(Lucas(n)+1, Fibonacci(n)-1).
2, 4, 1, 2, 4, 1, 6, 4, 11, 2, 8, 1, 58, 4, 21, 2, 76, 1, 110, 4, 199, 2, 144, 1, 1042, 4, 377, 2, 1364, 1, 1974, 4, 3571, 2, 2584, 1, 18698, 4, 6765, 2, 24476, 1, 35422, 4, 64079, 2, 46368, 1, 335522, 4, 121393, 2, 439204, 1, 635622, 4, 1149851, 2, 832040, 1
Offset: 1
Examples
a(15) = 21 = 3*7 since F(15) - 1 = 3*7*29 and L(15) + 1 = 3*5*7*13.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[Gcd(Lucas(n)+1, Fibonacci(n)-1): n in [1..60]]; // Vincenzo Librandi, Dec 24 2015
-
Mathematica
lucas[1]=1; lucas[2]=3; lucas[n_]:= lucas[n]= lucas[n-1] + lucas[n-2]; Table[GCD[lucas[i]+1, Fibonacci[i]-1], {i, 60}] Module[{nn=60,l,f},l=LucasL[Range[nn]]+1;f=Fibonacci[Range[nn]]-1;GCD@@@ Thread[ {l,f}]] (* Harvey P. Dale, Apr 29 2020 *)
-
PARI
a(n) = gcd(fibonacci(n+1)+fibonacci(n-1)+1,fibonacci(n)-1); \\ Altug Alkan, Dec 24 2015
Comments