A115359 Matrix (1,x)-(x,x^2) in Riordan array notation.
1, -1, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: n\k| 0 1 2 3 4 5 6 7 8 9 ---+----------------------------------------- 0 | 1; 1 | -1, 1; 2 | 0, 0, 1; 3 | 0, -1, 0, 1; 4 | 0, 0, 0, 0, 1; 5 | 0, 0, -1, 0, 0, 1; 6 | 0, 0, 0, 0, 0, 0, 1; 7 | 0, 0, 0, -1, 0, 0, 0, 1; 8 | 0, 0, 0, 0, 0, 0, 0, 0, 1; 9 | 0, 0, 0, 0, -1, 0, 0, 0, 0, 1; etc. Row and column numbering added by _Antti Karttunen_, Jan 19 2025
Links
Crossrefs
Programs
-
PARI
tabl(nn) = {T = matrix(nn, nn, n, k, n--; k--; if ((n==k), 1, if (n==2*k+1, -1, 0))); for (n=1, nn, for (k=1, n, print1(T[n, k], ", ");); print(););} \\ Michel Marcus, Mar 28 2015
-
PARI
A115359off1(n) = (ispolygonal(n,3)-(!(n%2) && issquare(n/2))); \\ (This is one-based) A115359(n) = A115359off1(1+n); \\ (zero-based) - Antti Karttunen, Jan 19 2025
Formula
Number triangle T(n, k)=if(n=k, 1, 0) OR if(n=2k+1, -1, 0).
a(n) = A010054(n) - A379480(n). [As a flat sequence with starting offset 1] - Antti Karttunen, Jan 19 2025