cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115362 Row sums of ((1,x) + (x,x^2))^(-1)*((1,x)-(x,x^2))^(-1) (using Riordan array notation).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3
Offset: 0

Views

Author

Paul Barry, Jan 21 2006

Keywords

Comments

Row sums of the matrix product A115358*A115361.
Generalized Ruler Function for k=4. - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)
a(n) is 1 + the 4-adic valuation of n+1. - Joerg Arndt, Oct 07 2015

Crossrefs

Cf. A053737, A115358, A115361, quadrisection of A235127.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, 1 + IntegerExponent[n + 1, 4]]; (* Michael Somos, Jul 19 2017 *)
  • PARI
    a(n) = 1 + valuation(n+1,4); \\ Joerg Arndt, Oct 07 2015
    
  • PARI
    {a(n) = if( n<0, 0, n%4==3, 1 + a((n - 3) / 4), 1)}; /* Michael Somos, Jul 13 2017 */
  • Sage
    [(1/3)*(4-sum(n.digits(4))+sum((n-1).digits(4))) for n in [1..96]] # Tom Edgar, Oct 06 2015
    

Formula

G.f.: Sum_{k>=0} x^(4^k)/(1-x^(4^k)). - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)
Dirichlet g.f. (conjectured): zeta(s)/(1-2^(-2s)). - Ralf Stephan, Mar 27 2015
a(n) = (1/3)*(4 + A053737(n) - A053737(n+1)). - Tom Edgar, Oct 06 2015
a(4*n) = a(4*n+1) = a(4*n+2) = 1, a(4*n+3) = 1+a(n), if n >= 0. - Michael Somos, Jul 13 2017
a(n) = 1 + A235127(1+n). - Antti Karttunen, Nov 18 2017, after Joerg Arndt's Oct 07 2015 comment.