cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A115376 where h[d+1,d-1] is a homogeneous symmetric function, s[d,d] is a Schur function indexed by two parts, * represents the Kronecker product and <, > is the standard scalar product on symmetric functions.

Original entry on oeis.org

1, 1, 5, 6, 16, 20, 41, 51, 90, 111, 177, 216, 321, 387, 546, 651, 882, 1041, 1366, 1597, 2042, 2367, 2962, 3407, 4187, 4782, 5787, 6567, 7842, 8847, 10443, 11718, 13692, 15288, 17703, 19677, 22603, 25018, 28532, 31458, 35644, 39158, 44108, 48294
Offset: 2

Views

Author

Mike Zabrocki, Jan 21 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^2/((1-x)(1-x^2)^4(1-x^3)),{x,0,50}],x],2]  (* Harvey P. Dale, Aug 24 2011 *)
  • PARI
    Vec(x^2 / ((1 - x)^6*(1 + x)^4*(1 + x + x^2)) + O(x^50)) \\ Colin Barker, May 10 2019

Formula

G.f.: x^2 / ((1 - x)^6*(1 + x)^4*(1 + x + x^2)).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 7*a(n-4) + 2*a(n-5) + 8*a(n-6) + 2*a(n-7) - 7*a(n-8) - 3*a(n-9) + 4*a(n-10) + a(n-11) - a(n-12) for n>11. - Colin Barker, May 10 2019
Showing 1-1 of 1 results.