A115392 First appearance of n-th prime as prime factor in list of semiprimes.
1, 2, 4, 5, 8, 10, 12, 14, 16, 21, 22, 25, 27, 29, 33, 35, 38, 41, 45, 47, 50, 52, 55, 58, 62, 64, 67, 70, 73, 76, 82, 84, 87, 88, 93, 96, 100, 104, 107, 111, 113, 115, 120, 121, 124, 126, 133, 137, 141, 142, 143, 147, 149, 155, 158, 162, 168, 169, 174, 176, 178, 183
Offset: 1
Keywords
Examples
a(5)=8 because 5th prime, 11, first appeared as a prime factor in 8th semiprime 22=2*11; a(6)=10 because 6th prime, 13, first appeared as a prime factor in 10th semiprime 26=2*13.
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
sp = Select[Range[4,20000],2 == PrimeOmega[#]&]; Table[Position[Mod[sp, Prime[k]],0][[1,1]],{k,1000}] (* For first 1000 terms. - Zak Seidov, Jun 27 2017 *)
-
PARI
first(n) = my(l = List([4,1]), u = 2*prime(n), res = vector(n), t=0); forprime(p = 2, t++; sqrt(2*prime(n)), forprime(q = p+1, u\p, listput(l, [p*q, t])); listsort(l); for(i=1, #l, if(res[l[i][3]]==0, res[l[i][3]] = i)) \\ David A. Corneth, Jun 28 2017
-
Python
from math import isqrt from sympy import primepi, prime, primerange def A115392(n): return int(-((t:=primepi(s:=isqrt(a:=prime(n)<<1)))*(t-1)>>1)+sum(primepi(a//p) for p in primerange(s+1))) # Chai Wah Wu, Apr 03 2025
Formula
Extensions
Edited by Zak Seidov, Jun 27 2017
Comments