A115409 Inverse integer permutation of A115408.
1, 5, 4, 7, 6, 2, 17, 16, 12, 10, 20, 19, 15, 13, 3, 43, 42, 38, 36, 26, 23, 51, 50, 46, 44, 34, 31, 8, 105, 104, 100, 98, 88, 85, 62, 54, 114, 113, 109, 107, 97, 94, 71, 63, 9
Offset: 1
Examples
Triangle begins: 1; 5, 4; 7, 6, 2; 17, 16, 12, 10; 20, 19, 15, 13, 3; ...
Links
Programs
-
Haskell
import Data.List (inits) a115409 n k = a115409_tabl !! (n-1) !! (k-1) a115409_row n = a115409_tabl !! (n-1) a115409_tabl = map f $ drop 2 $ inits a024431_list where f xs = reverse $ map (z -) zs where (z:zs) = reverse xs a115409_list = concat a115409_tabl -- Reinhard Zumkeller, Sep 16 2014
-
Mathematica
nmax = 9; differenceQ[seq_, x_] := Module[{r = False}, Do[If[x==seq[[k]] - seq[[j]], r = True; Break[]], {j, 1, Length[seq]}, {k, 1, Length[seq]}]; r]; seq[1] = {1, 2}; seq[i_] := seq[i] = Module[{j, k}, k = Max[seq[i-1]]; j = First[Select[ Range[k], !differenceQ[seq[i-1], #]&, 1]]; Union[seq[i-1], {2k+2, 2k+2+j}]]; A024431 = seq[nmax]; T[n_, k_] := A024431[[n+1]] - A024431[[k]]; Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 20 2021 *)
Comments