cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A115526 Inverse of number triangle A115524.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 0, 1, -1, 1, -1, 0, 0, 1, 1, -1, 0, 0, 1, -1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, -1, 1, 0, 1, -1, 0, 0, 0, 0, 1, 1, 0, 1, -1, 0, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, -1, 1, 0, 1, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 25 2006

Keywords

Comments

Row sums are number of zeros in binary expansion of n+2, that is, A023416(n+2) [conjecture].

Examples

			Triangle begins
1,
1, -1,
1, 0, 1,
1, 0, 1, -1,
1, -1, 0, 0, 1,
1, -1, 0, 0, 1, -1,
1, 0, 1, 0, 0, 0, 1,
1, 0, 1, 0, 0, 0, 1, -1,
1, 0, 1, -1, 0, 0, 0, 0, 1,
1, 0, 1, -1, 0, 0, 0, 0, 1, -1,
1, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1,
1, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, -1,
1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1,
1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, -1,
1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1,
1, 0, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1
		

A115952 Expansion of (1-x+x*y)/(1-x^2*y^2) - x^2/(1-x^2*y).

Original entry on oeis.org

1, -1, 1, -1, 0, 1, 0, 0, -1, 1, 0, -1, 0, 0, 1, 0, 0, 0, 0, -1, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1
Offset: 0

Views

Author

Paul Barry, Feb 02 2006

Keywords

Comments

Row sums are A000007. Diagonal sums are A115953. Inverse is A115954.

Examples

			Triangle begins
   1,
  -1,  1,
  -1,  0,  1,
   0,  0, -1,  1,
   0, -1,  0,  0,  1,
   0,  0,  0,  0, -1,  1,
   0,  0, -1,  0,  0,  0,  1,
   0,  0,  0,  0,  0,  0, -1,  1,
   0,  0,  0, -1,  0,  0,  0,  0,  1,
   0,  0,  0,  0,  0,  0,  0,  0, -1,  1,
   0,  0,  0,  0, -1,  0,  0,  0,  0,  0,  1,
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  1,
   0,  0,  0,  0,  0, -1,  0,  0,  0,  0,  0,  0,  1,
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  1,
   0,  0,  0,  0,  0,  0, -1,  0,  0,  0,  0,  0,  0,  0,  1,
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  1
		

Crossrefs

Cf. A115524.

Programs

  • Magma
    [[n eq k select 1 else n eq k+1 select -(1+(-1)^k)/2 else n eq 2*(k+1) select -1 else 0: k in [0..n]]: n in [0..15]]; // G. C. Greubel, May 06 2019
    
  • Mathematica
    T[n_, k_]:= If[n==k, 1, If[n==k+1, -(1+(-1)^k)/2, If[n==2*k+2, -1, 0]]];
    Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, May 06 2019 *)
  • PARI
    {T(n,k) = if(n==k, 1, if(n==k+1, -(1+(-1)^k)/2, if(n==2*k+2, -1, 0)))}; \\ G. C. Greubel, May 06 2019
    
  • Sage
    def T(n, k):
        if (n==k): return 1
        elif (n==k+1): return -(1+(-1)^k)/2
        elif (n==2*(k+1)): return -1
        else: return 0
    [[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, May 06 2019

Formula

Number triangle T(n,k)=if(n=k,1,0) OR if(n=2k+2,-1,0) OR if(n=k+1,-(1+(-1)^k)/2,0).

A115525 Periodic {1,1,-2,0,1,0,-1,0,0,1,-1,-1}.

Original entry on oeis.org

1, 1, -2, 0, 1, 0, -1, 0, 0, 1, -1, -1, 1, 1, -2, 0, 1, 0, -1, 0, 0, 1, -1, -1, 1, 1, -2, 0, 1, 0, -1, 0, 0, 1, -1, -1, 1, 1, -2, 0, 1, 0, -1, 0, 0, 1, -1, -1, 1, 1, -2, 0, 1, 0, -1, 0, 0, 1, -1, -1, 1, 1, -2, 0, 1, 0, -1, 0, 0, 1, -1, -1
Offset: 0

Views

Author

Paul Barry, Jan 25 2006

Keywords

Comments

Diagonal sums of number triangle A115524.

Programs

  • Mathematica
    PadRight[{},120,{1,1,-2,0,1,0,-1,0,0,1,-1,-1}] (* Harvey P. Dale, Aug 20 2021 *)

Formula

G.f.: (1+2x-x^3-2x^4-x^5)/(1+x+x^2-x^4-x^5-x^6).
Showing 1-3 of 3 results.