cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115561 a(n) = lpf((n/lpf(n))/lpf(n/lpf(n))), where lpf=A020639, least prime factor.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 2, 1, 1, 3, 7, 1, 5, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 7, 1, 11, 5, 1, 1, 2, 1, 5, 1, 13, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 7, 2, 1, 11, 1, 17, 1, 7, 1, 2, 1, 1, 5, 19, 1, 13, 1, 2, 3, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 23, 1, 1, 1, 2, 1, 7, 11, 5, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 10 2006

Keywords

Comments

From Peter Munn, Jul 14 2019: (Start)
a(n) = 1 if and only if n is 1 or a prime or semiprime. Otherwise a(n) is the 3rd factor when n is written as a product of primes in nondecreasing order. For example, 60 = 2*2*3*5, so a(60) = 3.
Although values equal to 1 are predominant at low indices, their asymptotic density is 0, whereas for values equal to prime(k) for k > 0 the asymptotic density is positive, namely A281890(k,3)/A002110(k)^3. For all sufficiently large n the median value of a(1), a(2), ... a(n) is A281889(3) = 433.
(End)

Crossrefs

Programs

  • Mathematica
    f[n_] := FactorInteger[n][[1, 1]]; Table[f[#/f@ #] &[n/f@ n], {n, 101}] (* Michael De Vlieger, Aug 14 2017 *)
  • PARI
    a020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1) \\ after M. F. Hasler in A020639
    a(n) = a020639((n/a020639(n))/a020639(n/a020639(n))) \\ Felix Fröhlich, Jul 15 2019
  • Python
    from sympy import divisors, primefactors
    def a032752(n): return 1 if n==1 else divisors(n)[-2]
    def a020639(n): return 1 if n==1 else primefactors(n)[0]
    def a(n): return a020639(a032752(a032752(n)))
    print([a(n) for n in range(1, 102)]) # Indranil Ghosh, Aug 12 2017
    

Formula

a(n) = A020639(A054576(n)).
If A001222(n) >= 3, a(n) = A027746(n,3), otherwise a(n) = 1. - Peter Munn, Jul 13 2019