cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115564 Least number d such that 10^n -/+ d form a prime pair.

Original entry on oeis.org

3, 3, 9, 69, 129, 39, 261, 213, 459, 33, 57, 39, 267, 657, 357, 1377, 3, 387, 1899, 393, 213, 651, 3273, 2733, 3423, 1533, 429, 603, 1131, 1137, 1113, 1131, 249, 603, 2979, 159, 429, 921, 1269, 2757, 777, 789, 2277, 11799, 9, 5343, 1821, 6981, 23049, 1623
Offset: 1

Views

Author

Lekraj Beedassy, Mar 11 2006

Keywords

Comments

a(n) == 0 (mod 3). - Robert G. Wilson v, Mar 13 2006

Examples

			a(1)=3 because 10-3=7 and 10+3=13 both of which are primes.
a(3)=9 because 1000-9=991 and 1000+9=1009 both of which are primes.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
    for k from 3 by 6 do
        if isprime(10^n+k) and isprime(10^n-k) then return k fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, May 25 2018
  • Mathematica
    f[n_] := Block[{k = 1}, While[ ! PrimeQ[10^n - 3k] || ! PrimeQ[10^n + 3k], k++ ]; 3k]; Array[f, 50]
    dpp[n_]:=Module[{n10=10^n,np=NextPrime[10^n],diff},diff=np-n10; While[ !PrimeQ[n10-diff],np=NextPrime[np];diff=np-n10];np-n10]; Array[dpp,80] (* Harvey P. Dale, Mar 28 2012 *)
  • PARI
    { for (n = 1, 80, tenp = 10^n ; p = nextprime(tenp) ; while ( p-tenp < tenp, diff=p-tenp ; if ( isprime(tenp-diff), print1(diff",") ; break ; ) ; p=nextprime(p+1) ; ) ; ) } \\ R. J. Mathar, Mar 15 2006

Formula

a(n) = 3*A117738(n) = A082467(10^n). - Robert Israel, May 25 2018

Extensions

More terms from Craig Baribault (csb166(AT)psu.edu) and Robert G. Wilson v, Mar 13 2006
More terms from R. J. Mathar, Mar 15 2006
Corrected by Harvey P. Dale, Mar 28 2012